Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393233

RESUMO

In this research, the decomposition of toxic organics from pulp and paper mill effluent by the sequential application of ozonation and biodegradation was studied. Ozonation, as a pre-treatment, was executed to transform the initial pollutants into less toxic compounds (such as organic acids of low molecular weights). Biodegradation was executed during three days with acclimated microorganisms that were able to complete the decomposition of the initial organic mixture (raw wastewater) and to achieve a higher degree of mineralization (85-90%). Experiments were performed under three different conditions: (a) only ozonation of the initial contaminants, (b) only biodegradation of residual water without previous treatment by ozone and (c) ozonation followed by biodegradation performed by acclimated microorganisms. In the case of 72 h of biodegradation, the mineralization efficiency reached 85% and 89% after 30 and 60 min of ozonation, respectively. The no significant difference in this parameter coincided with the calculated generalized microorganisms' consortia specific growing rate µmax that was reduced from 2.08 × 10-3 h-1 to 6.05 × 10-4 h-1 when the ozonation time was longer. The identification of the organics composition by gas chromatography with mass detector (GC-MS) before and after treatments confirmed that the proposed combined process served as a more efficient alternative to secondary and tertiary treatments (mineralization degree between 60 and 80% in average) of the paper industry wastewater.

2.
RSC Adv ; 14(6): 3923-3935, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38283593

RESUMO

This research focuses on the synthesis of NiO and CeO2 thin films using spray pyrolysis for the removal of benzoic acid using ozone as an oxidant. The results indicate that the addition of CeO2 films significantly enhances the mineralization of benzoic acid, achieving a rate of over 80% as the CeO2 films react with ozone to produce strong oxidant species, such as hydroxyl radicals, superoxide radicals, and singlet oxygen as demonstrated by the presence of quenchers in the reaction system. The difference in catalytic activity between NiO and CeO2 films was analyzed via XPS technique; specifically, hydroxyl oxygen groups in the CeO2 film were greater in number than those in the NiO film, thus benefitting catalytic oxidation as these species are considered active oxidation sites. The effects of nozzle-substrate distances and deposition time during the synthesis of the films on benzoic acid removal efficiency were also explored. Based on XRD characterization, it was established that the NiO and CeO2 films were polycrystalline with a cubic structure. NiO spherical nanoparticles were well-distributed on the substrate surface, while some pin holes and overgrown clusters were observed in the CeO2 films according to the SEM results. The stability of the CeO2 films after five consecutive cycles confirms their reusability. The retrieval of films is easy because it does not require additional separation methods, unlike the catalyst in powder form. The obtained results indicate that the CeO2 films have potential application in pollutant removal from water through catalytic ozonation.

3.
Neural Netw ; 151: 156-167, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35447480

RESUMO

A new design of a non-parametric adaptive approximate model based on Differential Neural Networks (DNNs) applied for a class of non-negative environmental systems with an uncertain mathematical model is the primary outcome of this study. The approximate model uses an extended state formulation that gathers the dynamics of the DNN and a state projector (pDNN). Implementing a non-differentiable projection operator ensures the positiveness of the identifier states. The extended form allows producing continuous dynamics for the projected model. The design of the learning laws for the weight adjustment of the continuous projected DNN considered the application of a controlled Lyapunov-like function. The stability analysis based on the proposed Lyapunov-like function leads to the characterization of the ultimate boundedness property for the identification error. Applying the Attractive Ellipsoid Method (AEM) yields to analyze the convergence quality of the designed approximate model. The solution to the specific optimization problem using the AEM with matrix inequalities constraints allows us to find the parameters of the considered DNN that minimizes the ultimate bound. The evaluation of two numerical examples confirmed the ability of the proposed pDNN to approximate the positive model in the presence of bounded noises and perturbations in the measured data. The first example corresponds to a catalytic ozonation system that can be used to decompose toxic and recalcitrant contaminants. The second one describes the bacteria growth in aerobic batch regime biodegrading simple organic matter mixture.


Assuntos
Algoritmos , Dinâmica não Linear , Simulação por Computador , Modelos Teóricos , Redes Neurais de Computação
4.
Environ Sci Pollut Res Int ; 24(33): 25550-25560, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26832864

RESUMO

Naphthalene (NA) is a polycyclic aromatic hydrocarbon with toxic properties in aquatic systems. Ozonation (O3) and catalytic ozonation (O3-cat) processes are attractive alternatives of degradation for this kind of compound. NA (20 mg L-1) degradation by conventional and catalytic ozonation in the presence of a cosolvent (ethanol) was the aim of this study. This solution was proposed to simulate some aspects of real wastewaters where not only water acts as solvent. Two proportions of the mixture ethanol/water were selected (30:70 and 50:50) with the purpose of studying the cosolvent effect on NA degradation system by ozonation. O3-cat process used nickel oxide as catalyst (0.1 g L-1). The degradation analysis of NA by O3-cat in two different proportions of cosolvent showed that in the case of 30:70 (ethanol/water), a 95 % of NA elimination in 60 min was obtained, while in the case 50:50 (ethanol/water), only 55 % was achieved. The O3 process showed similar results of degradation to the initial compound in comparison with catalytic system. According to these results, there is an inhibition effect in pollutant removal by ethanol due to the higher ethanol concentration; the lower elimination rate of NA was obtained (by 40 % during the 60 min). The by-products analysis of ozonation process detected oxalic and formic acids. Treatments with NiO presented less production of organic acids in comparison with conventional ozonation process. The high concentration of ethanol has a relevant factor in the elimination of NA and formation of organic acids; samples with 50 % of cosolvent have showed a higher concentration of organic acids. X-ray photoelectron spectroscopy (XPS) study of O3-cat of diluent (O3-NiO control) and O3-NA-NiO showed the presence of -CO3 absorbed on catalyst due to ethanol decomposition.


Assuntos
Etanol/química , Naftalenos/química , Níquel/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Catálise , Ozônio/química , Solventes/química , Eliminação de Resíduos Líquidos/instrumentação
5.
Anticancer Agents Med Chem ; 15(9): 1190-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25353336

RESUMO

C6 rat glioma cells are one of the most aggressive carcinogenic tumors, due to its high mortality rate in human beings and animals. The current treatment for this illness includes surgery, radio and chemotherapy, showing relapse in patients treated with those therapies. Since the ozone was found to be an effective bioreactive to inhibit growth of several carcinoma cells in vitro and in vivo. In this research, therapeutic peritoneum insufflation of ozone/oxygen dissolved in the physiological solution of NaCl 0.9% was dosed for fifteen days on different female mice groups in an advanced stage of C6 tumor (n=6). The first of them was the control group which had no treatment, the second group was dosage with oxygen every second day, the third group was dosed with ozone every second day, and finally the fourth group was dosed with ozone dissolved every fifth day. The size of the tumor was higher in both groups dosage by ozone, nevertheless tumor activity measured by microPET was 98% less in the fourth group compared with the control group. That result proves that ozone provokes an increase in the tumor volume even though the decrease of the cell activity. Those results were confirmed by the quantification of hydroperoxides, total cholesterol and total triglycerides.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Ozônio/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Nus , Ratos
6.
Environ Sci Pollut Res Int ; 21(21): 12241-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946707

RESUMO

Terephthalic acid (TA) is considered as a refractory model compound. For this reason, the TA degradation usually requires a prolonged reaction time to achieve mineralization. In this study, vanadium oxide (VxOy) supported on titanium oxide (TiO2) served as a photocatalyst in the ozonation of the TA with light-emitting diodes (LEDs), having a bandwidth centered at 452 nm. The modified catalyst (VxOy/TiO2) in combination with ozone and LEDs improved the TA degradation and its by-products. The results obtained by this system were compared with photolysis, single ozonation, catalytic ozonation, and photocatalytic ozonation of VxOy/TiO2 with UV lamp. The LED-based photocatalytic ozonation showed almost the same decomposition efficiency of the TA, but it was better in comparison with the use of UV lamp. The oxalic acid accumulation, as the final product of the TA decomposition, was directly influenced by either the presence of VxOy or/and the LED irradiation. Several by-products formed during the TA degradation, such as muconic, fumaric, and oxalic acids, were identified. Besides, two unidentified by-products were completely removed during the observed time (60 min). It was proposed that the TA elimination in the presence of VxOy/TiO2 as catalyst was carried out by the combination of different mechanisms: molecular ozone reaction, indirect mechanism conducted by ·OH, and the surface complex formation.


Assuntos
Ozônio/química , Ácidos Ftálicos/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Cinética , Ácido Oxálico/análise , Fotólise , Titânio/química , Vanádio/química
7.
J Hazard Mater ; 152(3): 1108-14, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17868984

RESUMO

This study deals with evaluation of organic matter from Mexico City waste sanitary landfill leachate of Bordo Poniente (including domestic and industrial) by ozonation after a coagulation treatment with Fe2(SO4)(3) (2.5 g/L at pH 4-5). The content of humic substances after the coagulation treatment decreases up to 70%. Then leachate obtained from a solid with initial COD=1511 mg/L and the pH 8.5 was treated by ozone. The aqueous samples by a UV-vis and HPLC technique were analyzed. The partial identification of the initial composition of the organic matter as well as of intermediates and final products was carried out after the extraction of the initial and ozonated leachate with benzene, chloroform:methanol (2:1) and hexane. Then the extracts with a gas chromatograph with mass detector and FID were analyzed. In the HPLC results we identify malonic and oxalic acids. The initial concentrations of these acids were 19 mg/L and 214 mg/L, respectively. The oxalic acid is formatted and accumulated in ozonation. The obtained results show that the color disappears (visually) at 100% during 5 min of ozonation. The organic substances, extracted with chloroform-methanol, may be destructed during 15 min of ozonation; the organic matter, extracted with benzene, destructs completely by ozone during 5 min, and the organic compounds extracted with hexane have a low ozonation rate. The toxic compounds presented in leachate decompose completely during 15 min of ozonation. The ozonation rate constants for each group of organics (as observed constants) were calculated applying simplified mathematical model and the recurrent least square method using the program MATLAB 6.5.


Assuntos
Ozônio/química , Eliminação de Resíduos , Poluentes do Solo/química , Cromatografia Líquida de Alta Pressão , Cinética , Espectrofotometria Ultravioleta
8.
J Hazard Mater ; 146(3): 661-7, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17560024

RESUMO

In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24mg/g and treated by ozone (with the ozone initial concentration 16mg/L) during 90min in a reactor by the "fluid bed" principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20min and by-products of ozonation are started to be destroyed after 30min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method.


Assuntos
Antracenos/química , Oxidantes Fotoquímicos/química , Ozônio/química , Poluentes do Solo/química , Cinética , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA