Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401955, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613435

RESUMO

Unimolecular current rectifiers are fundamental building blocks in organic electronics. Rectifying behavior has been identified in numerous organic systems due to electron-hole asymmetries of orbital levels interfaced by a metal electrode. As a consequence, the rectifying ratio (RR) determining the diode efficiency remains fixed for a chosen molecule-metal interface. Here, a mechanically tunable molecular diode exhibiting an exceptionally large rectification ratio (>105) and reversible direction is presented. The molecular system comprises a seven-armchair graphene nanoribbon (GNR) doped with a single unit of substitutional diboron within its structure, synthesized with atomic precision on a gold substrate by on-surface synthesis. The diboron unit creates half-populated in-gap bound states and splits the GNR frontier bands into two segments, localizing the bound state in a double barrier configuration. By suspending these GNRs freely between the tip of a low-temperature scanning tunneling microscope and the substrate, unipolar hole transport is demonstrated through the boron in-gap state's resonance. Strong current rectification is observed, associated with the varying widths of the two barriers, which can be tuned by altering the distance between tip and substrate. This study introduces an innovative approach for the precise manipulation of molecular electronic functionalities, opening new avenues for advanced applications in organic electronics.

2.
ACS Nano ; 16(9): 14819-14826, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36037149

RESUMO

Spin-hosting graphene nanostructures are promising metal-free systems for elementary quantum spintronic devices. Conventionally, spins are protected from quenching by electronic band gaps, which also hinder electronic access to their quantum state. Here, we present a narrow graphene nanoribbon substitutionally doped with boron heteroatoms that combines a metallic character with the presence of localized spin 1/2 states in its interior. The ribbon was fabricated by on-surface synthesis on a Au(111) substrate. Transport measurements through ribbons suspended between the tip and the sample of a scanning tunneling microscope revealed their ballistic behavior, characteristic of metallic nanowires. Conductance spectra show fingerprints of localized spin states in the form of Kondo resonances and inelastic tunneling excitations. Density functional theory rationalizes the metallic character of the graphene nanoribbon due to the partial depopulation of the valence band induced by the boron atoms. The transferred charge builds localized magnetic moments around the boron atoms. The orthogonal symmetry of the spin-hosting state's and the valence band's wave functions protects them from mixing, maintaining the spin states localized. The combination of ballistic transport and spin localization into a single graphene nanoribbon offers the perspective of electronically addressing and controlling carbon spins in real device architectures.

3.
Meteorit Planet Sci ; 57(3): 644-656, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35912284

RESUMO

Using high-resolution atomic force microscopy (AFM) with CO-functionalized tips, we atomically resolved individual molecules from Murchison meteorite samples. We analyzed powdered Murchison meteorite material directly, as well as processed extracts that we prepared to facilitate characterization by AFM. From the untreated Murchison sample, we resolved very few molecules, as the sample contained mostly small molecules that could not be identified by AFM. By contrast, using a procedure based on several trituration and extraction steps with organic solvents, we isolated a fraction enriched in larger organic compounds. The treatment increased the fraction of molecules that could be resolved by AFM, allowing us to identify organic constituents and molecular moieties, such as polycyclic aromatic hydrocarbons and aliphatic chains. The AFM measurements are complemented by high-resolution mass spectrometry analysis of Murchison fractions. We provide a proof of principle that AFM can be used to image and identify individual organic molecules from meteorites and propose a method for extracting and preparing meteorite samples for their investigation by AFM. We discuss the challenges and prospects of this approach to study extraterrestrial samples based on single-molecule identification.

4.
Science ; 377(6603): 298-301, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857594

RESUMO

Controlling selectivity of reactions is an ongoing quest in chemistry. In this work, we demonstrate reversible and selective bond formation and dissociation promoted by tip-induced reduction-oxidation reactions on a surface. Molecular rearrangements leading to different constitutional isomers are selected by the polarity and magnitude of applied voltage pulses from the tip of a combined scanning tunneling and atomic force microscope. Characterization of voltage dependence of the reactions and determination of reaction rates demonstrate selectivity in constitutional isomerization reactions and provide insight into the underlying mechanisms. With support of density functional theory calculations, we find that the energy landscape of the isomers in different charge states is important to rationalize the selectivity. Tip-induced selective single-molecule reactions increase our understanding of redox chemistry and could lead to novel molecular machines.

5.
Org Lett ; 23(19): 7376-7380, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515492

RESUMO

The reaction of 2-(trimethylsilyl)thiophen-3-yl triflate with CsF in the presence of 2,3,4,5-tetraphenylcyclopentadienone affords 4,5,6,7-tetraphenylbenzo[b]thiophene, as it would be expected from the hypothesized generation and trapping of 2-thiophyne. However, a detailed experimental and computational study discards the intermediacy of this elusive 5-membered hetaryne. Instead, a complex mechanism involving the generation of an intermediate ketocarbene, which adds to the cyclopentadienone to give an isolable tricyclic intermediate, followed by thermal rearrangements, is proposed.

6.
J Vis Exp ; (169)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749671

RESUMO

On-surface synthesis has recently been regarded as a promising approach for the generation of new molecular structures. It has been particularly successful in the synthesis of graphene nanoribbons, nanographenes and intrinsically reactive and instable, yet attractive species. It is based on the combination of solution chemistry aimed at preparation of appropriate molecular precursors for further ultra-high vacuum surface assisted transformations. This approach also owes its success to an incredible development of characterization techniques, such as scanning tunneling/atomic force microscopy and related methods, which allow detailed, local characterization at atomic scale. While the surface-assisted synthesis can provide molecular nanostructures with outstanding precision, down to single atoms, it suffers from basing on metallic surfaces and often limited yield. Therefore, the extension of the approach away from metals and the struggle to increase productivity seem to be significant challenges toward wider applications. Herein, we demonstrate the on-surface synthesis approach for generation of non-planar nanographenes, which are synthesized through a combination of solution chemistry and sequential surface-assisted processes, together with the detailed characterization by scanning probe microscopy methods.


Assuntos
Grafite/química , Microscopia de Força Atômica/métodos , Nanoestruturas/química , Monóxido de Carbono/química , Ouro/química , Grafite/síntese química , Hidrogenação , Nanoestruturas/ultraestrutura , Porosidade , Soluções , Análise Espectral , Propriedades de Superfície , Vácuo
7.
Phys Rev Lett ; 125(14): 146801, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064521

RESUMO

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.

8.
Chem Commun (Camb) ; 56(84): 12853-12856, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32969432

RESUMO

During the last two decades aryne and bisaryne equivalents have been increasingly used as privileged building blocks for the synthesis of polycyclic aromatic hydrocarbons (PAHs). Here we report the synthesis and reactivity of an efficient precursor of the 2,6,10-triphenylenotriyne synthon, which constitutes the best example to date of a trisaryne equivalent on a benzofused polyaromatic core.

9.
Chemistry ; 26(11): 2509-2515, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31916634

RESUMO

The Cu-catalyzed reaction of substituted α-diazoesters with fluoride gives α-fluoroesters with ee values of up to 95 %, provided that chiral indane-derived bis(oxazoline) ligands are used that carry bulky benzyl substituents at the bridge and moderately bulky isopropyl groups on their core. The apparently homogeneous solution of CsF in C6 F6 /hexafluoroisopropanol (HFIP) is the best reaction medium, but CsF in the biphasic mixture CH2 Cl2 /HFIP also provides good results. DFT studies suggest that fluoride initially attacks the Cu- rather than the C-atom of the transient donor/acceptor carbene intermediate. This unusual step is followed by 1,2-fluoride shift; for this migratory insertion to occur, the carbene must rotate about the Cu-C bond to ensure orbital overlap. The directionality of this rotatory movement within the C2 -symmetric binding site determines the sense of induction. This model is in excellent accord with the absolute configuration of the resulting product as determined by X-ray diffraction using single crystals of this a priori wax-like material grown by capillary crystallization.

10.
J Am Chem Soc ; 141(39): 15488-15493, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31525873

RESUMO

Four decades after the first (and only) reported synthesis of kekulene, this emblematic cycloarene has been obtained again through an improved route involving the construction of a key synthetic intermediate, 5,6,8,9-tetrahydrobenzo[m]tetraphene, by means of a double Diels-Alder reaction between styrene and a versatile benzodiyne synthon. Ultra-high-resolution AFM imaging of single molecules of kekulene and computational calculations provide additional support for a molecular structure with a significant degree of bond localization in accordance with the resonance structure predicted by the Clar model.

11.
Acc Chem Res ; 52(9): 2472-2481, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31411855

RESUMO

In recent years, synthetic transformations based on aryne chemistry have become particularly popular, mostly due to the spread of methods to generate these highly reactive intermediates in a controlled manner under mild reaction conditions. In fact, aryne cycloadditions such as the Diels-Alder reaction are nowadays widely used for the efficient preparation of polycyclic aromatic compounds. In 1998, our group discovered that arynes can undergo transition metal-catalyzed reactions, a finding that opened new perspectives in aryne chemistry. In particular, Pd-catalyzed [2 + 2 + 2] cycloaddition of arynes allowed the straightforward synthesis of triphenylene derivatives such as starphenes or cloverphenes. We found that this reaction is compatible with different substituents and sterically demanding arynes as starting materials. This transformation is especially useful to increase the molecular complexity in one single step, transforming molecules formed by n cycles in structures with 3n + 1 cycles. In fact, we took advantage of this protocol to prepare a large variety of sterically congested polycyclic aromatic hydrocarbons such as helicenes or twisted polyarenes. Soon after the discovery of the reaction, the co-cyclotrimerization of arynes with other reaction partners, such as electron deficient alkynes, significantly expanded the potential of this transformation. Also the use of catalysts based on alternative metals besides Pd (e.g., Ni, Cu, Au) or the use of other strained intermediates such as cycloalkynes or cycloallenes added value to this reaction. In addition, we realized that the Pd-catalyzed aryne cyclotrimerization reaction is particularly useful for the bottom-up preparation of well-defined nanographenes by chemical methods. Although the extreme insolubility of these planar nanographenes hampered their manipulation and characterization by conventional methods, recent advances in single molecule on-surface characterization by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) with functionalized tips under ultrahigh vacuum (UHV) conditions, permitted the impressive visualization of these nanographenes with submolecular resolution, together with the examination of the corresponding molecular orbital densities. Moreover, arynes have been shown to possess a rich on-surface chemistry. In particular, arynes have been generated and studied on-surface, showing that the reactivity is preserved even at cryogenic temperatures. On-surface aryne cyclotrimerization was also demonstrated to obtain large starphene derivatives. Therefore, it is expected that the combination of aryne cycloadditions and on-surface synthesis will provide notable findings in the near future, including the "à la carte" preparation of graphene materials or the synthesis of elusive molecules with unique properties.

12.
Chem Sci ; 10(43): 10143-10148, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32055368

RESUMO

The synthesis of porous nanographenes is a challenging task for solution chemistry, and thus, on-surface synthesis provides an alternative approach. Here, we report the synthesis of a triporous nanographene with 102 sp2 carbon atoms by combining solution and surface chemistry. The carbon skeleton was obtained by Pd-catalyzed cyclotrimerization of arynes in solution, while planarization of the molecule was achieved through two hierarchically organized on-surface cyclodehydrogenation reactions, intra- and inter-blade. Remarkably, the three non-planar [14]annulene pores of this nanographene further evolved at higher temperatures showing interesting intra-porous on-surface reactivity.

13.
Chem Commun (Camb) ; 52(32): 5534-7, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27030320

RESUMO

The synthesis of an efficient precursor of the novel 1,7-naphthodiyne synthon is reported. Preliminary experiments demonstrate the usefulness of this platform for the synthesis of sterically congested polyarenes, such as helicenes and angularly fused acene derivatives. Furthermore, a novel intramolecular aryne trapping reaction is described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...