Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 134-135: 108917, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718557

RESUMO

BACKGROUND: Osteosarcoma (OS) is a prevalent primary bone cancer affecting both humans and canines. This study describes initial insights into the interaction of the human monoclonal antibody IF3 to an insulin-like growth factor 2 receptor (IGF2R) radiolabeled with either alpha-emitting Actinium-225 (225Ac) or beta-emitting Lutetium-177 (177Lu) radionuclides with the OS cells and tumor microenvironment (TME) in experimental human and canine OS. BASIC PROCEDURES: SCID mice bearing canine Gracie or human OS-33 OS tumors were treated with 177Lu- or 225Ac-labeled IF3 antibody, sacrificed at 24, 72 or 168 h post-treatment and their tumors were analyzed by immunohistochemistry (IHC) for the presence of OS cells, various elements of TME as well as for the double DNA strand breaks with γH2AX and caspase 3 assays. MAIN FINDINGS: IHC revealed a reduction in IGF2R-positive OS cells and OS stem cell populations post therapy with 225Ac- and 177Lu-labeled IF3 antibody. Notably, radiolabeled IF3 antibody effectively diminished pro-tumorigenic M2 macrophages, highlighting its therapeutic promise. The study also unveiled varied responses of natural killer (NK) cells and M1 macrophages, shedding light on the intricate TME interplay. Time-dependent increase in γ-H2AX staining in canine Gracie and human OS-33 tumors treated with [177Lu]Lu-IF3 and [225Ac]Ac-IF3 was observed at 24 and 72 h post-RIT. PRINCIPAL CONCLUSIONS: These findings suggest that radiolabeled antibodies offer a hopeful avenue for personalized OS treatment, emphasizing the importance of understanding their impact on the TME and potential synergies with immunotherapy.

2.
J Drug Target ; 29(6): 660-668, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33496213

RESUMO

Breast cancer is the most common cancer in women. Despite advances in screening women for genetic predisposition to breast cancer and risk stratification, a majority of women carriers remain undetected until they become affected. Thus, there is a need to develop a cost-effective, rapid, sensitive and non-invasive early-stage diagnostic method. Kinases are involved in all fundamental cellular processes and mutations in kinases have been reported as drivers of cancer. PPARγ is a ligand-activated transcription factor that plays important roles in cell proliferation and metabolism. However, the complete set of kinases modulated by PPARγ is still unknown. In this study, we identified human kinases that are potential PPARγ targets and evaluated their differential expression and gene pair correlations in human breast cancer patient dataset TCGA-BRCA. We further confirmed the findings in human breast cancer cell lines MCF7 and SK-BR-3 using a kinome array. We observed that gene pair correlations are lost in tumours as compared to healthy controls and could be used as a supplement strategy for diagnosis and prognosis of breast cancer.


Assuntos
Neoplasias da Mama/enzimologia , PPAR gama/metabolismo , Fosfotransferases/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Feminino , Humanos , Células MCF-7 , Mutação , Fosfotransferases/genética , Prognóstico
3.
Invest New Drugs ; 38(4): 909-921, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31375978

RESUMO

Treatment response rates to current anticancer therapies for HER2 overexpressing breast cancer are limited and are associated with severe adverse drug reactions. Tyrosine kinases perform crucial roles in cellular processes by mediating cell signalling cascades. Ibrutinib is a recently approved Tyrosine Kinase Inhibitor (TKI) that has been shown be an effective therapeutic option for HER2 overexpressing breast cancer. The molecular mechanisms, pathways, or genes that are modulated by ibrutinib and the mechanism of action of ibrutinib in HER2 overexpressing breast cancer remain obscure. In this study, we have performed a kinome array analysis of ibrutinib treatment in two HER2 overexpressing breast cancer cell lines. Our analysis shows that ibrutinib induces changes in nuclear morphology and causes apoptosis via caspase-dependent extrinsic apoptosis pathway with the activation of caspases-8, caspase-3, and cleavage of PARP1. We further show that phosphorylated STAT3Y705 is upregulated and phosphorylated p21T145 is downregulated upon ibrutinib treatment. We propose that STAT3 upregulation is a passive response as a result of induction of DNA damage and downregulation of phosphorylated p21 is promoting cell cycle arrest and apoptosis in the two HER2 overexpressing cell lines. These results suggest that inhibitors of STAT3 phosphorylation may be potential options for combination therapy to help increase the efficacy of ibrutinib against HER2-overexpressing tumors.


Assuntos
Adenina/análogos & derivados , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Piperidinas/farmacologia , Receptor ErbB-2 , Fator de Transcrição STAT3/metabolismo , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...