Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927571

RESUMO

Heart disease is one of the leading causes of death in the United States and throughout the world. While there are different techniques for reducing or preventing the impact of heart disease, nitric oxide (NO) is administered as nitroglycerin for reversing angina or chest pain. Unfortunately, due to its gaseous and short-lived half-life, NO can be difficult to study or even administer. Therefore, controlled delivery of NO is desirable for therapeutic use. In the current study, the goal was to fabricate NO-releasing microspheres (MSs) using a donor molecule, S-Nitroso-N-Acetyl penicillamine, (SNAP), and encapsulating it in poly(ε-caprolactone) (PCL) using a single-emulsion technique that can provide sustained delivery of NO to cells over time without posing any toxicity risks. Optimization of the fabrication process was performed by varying the duration of homogenization (5, 10, and 20 min) and its effect on entrapment efficiency and size. The optimized SNAP-MS had an entrapment efficiency of ˃50%. Furthermore, we developed a modified method for NO detection by using NO microsensors to detect the NO release from SNAP-MSs in real time, showing sustained release behavior. The fabricated SNAP-MSs were tested for biocompatibility with HUVECs (human umbilical vein endothelial cells), which were found to be biocompatible. Lastly, we tested the effect of controlled NO delivery to human induced pluripotent stem-derived cardiomyocytes (hiPSC-CMs) via SNAP-MSs, which showed a significant improvement in the electrophysiological parameters and alleviated anoxic stress.

2.
Cells ; 12(7)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37048163

RESUMO

Myocardial Infarction (MI) occurs due to a blockage in the coronary artery resulting in ischemia and necrosis of cardiomyocytes in the left ventricular heart muscle. The dying cardiac tissue is replaced with fibrous scar tissue, causing a decrease in myocardial contractility and thus affecting the functional capacity of the myocardium. Treatments, such as stent placements, cardiac bypasses, or transplants are beneficial but with many limitations, and may decrease the overall life expectancy due to related complications. In recent years, with the advent of human induced pluripotent stem cells (hiPSCs), newer avenues using cell-based approaches for the treatment of MI have emerged as a potential for cardiac regeneration. While hiPSCs and their derived differentiated cells are promising candidates, their translatability for clinical applications has been hindered due to poor preclinical reproducibility. Various preclinical animal models for MI, ranging from mice to non-human primates, have been adopted in cardiovascular research to mimic MI in humans. Therefore, a comprehensive literature review was essential to elucidate the factors affecting the reproducibility and translatability of large animal models. In this review article, we have discussed different animal models available for studying stem-cell transplantation in cardiovascular applications, mainly focusing on the highly translatable porcine MI model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Suínos , Animais , Camundongos , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Miocárdio , Infarto do Miocárdio/terapia
3.
Methods Protoc ; 5(1)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35200529

RESUMO

Masson's Trichrome Staining (MTS) is a useful tool for analyzing fibrosis in a plethora of disease pathologies by differential staining of tissue components. It is used to identify collagen fibers in different tissues like heart, lung, skin, and muscles. Especially in cardiac fibrosis, MTS stains the collagen fibers (blue color), which helps in the distinction of scar area versus the healthy area (red color). However, there are several challenges to stain both paraffin-embedded sections and frozen (cryosections) using a single protocol. Therefore, the goal of this study was to develop a simple short protocol to assess cardiac fibrosis in both paraffin-embedded and cryo heart sections. MTS uses three different stains, i.e., Weigert's Iron Hematoxylin, Biebrich scarlet-acid fuchsin, and aniline blue to detect nuclei, cytoplasm, and collagen, respectively. In this study, we developed a simple short protocol that can be adapted by any lab to easily assess cardiac fibrosis in paraffin and frozen heart sections. Furthermore, we have addressed the challenges that are commonly faced during the immunostaining process and troubleshooting techniques. Overall, we have successfully developed a simple one-step protocol to assess myocardial fibrosis in paraffin-embedded and frozen cryosections.

4.
Front Cardiovasc Med ; 8: 742315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34651028

RESUMO

Cardiovascular disease (CVD) is the leading cause of mortality, resulting in approximately one-third of deaths worldwide. Among CVD, acute myocardial infarctions (MI) is the leading cause of death. Current treatment modalities for treating CVD have improved over the years, but the demand for new and innovative therapies has been on the rise. The field of nanomedicine and nanotechnology has opened a new paradigm for treating damaged hearts by providing improved drug delivery methods, specifically targeting injured areas of the myocardium. With the advent of innovative biomaterials, newer therapeutics such as growth factors, stem cells, and exosomes have been successfully delivered to the injured myocardial tissue, promoting improvement in cardiac function. This review focuses on three major drug delivery modalities: nanoparticles, microspheres, and hydrogels, and their potential for treating damaged hearts following an MI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA