Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(2): 724-737, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38086687

RESUMO

A selenonium organic counter ion has been used in polyoxometalate chemistry to develop a new aryl selenonium polyoxometalate (POM) hybrid, and its photocatalytic properties have been explored in comparison with an aryl sulfonium POM-hybrid counterpart for the first time. The chalcogenonium counterions, namely, methyldiphenylsulfonium trifluoromethane sulfonate (MDPST) and methyldiphenylselenonium trifluoromethane sulfonate (MDPSeT), and their octamolybdate ([Mo8O26]4-) hybrids, 1 and 2, with the general formula (C13H13X)4[Mo8O26] (where X = S for 1 and Se for 2) were synthesized and characterized. Hybrids 1 and 2 vary in their chalcogenonium cationic center (S+vs. Se+), which enabled a direct comparison of their photocatalytic properties as a function of the cationic center. The photocatalytic activities of hybrids 1 and 2 were tested using the reduction of dichromate (Cr2O72-) as a model reaction under UV irradiation. A 99% photocatalytic reduction of Cr2O72- with a rate constant of 0.0305 min-1 was achieved with hybrid 2, while only a 67% reduction with a rate constant of 0.0062 min-1 was observed with hybrid 1 in 180 minutes. The better catalytic performance of hybrid 2 may be correlated to the larger atomic radii of Se than S, which helps in better stabilizing the photogenerated electron-hole (e--h+) pair on the POM cluster by polarizing its lone pair more efficiently compared to S. The catalytic recyclability was tested for up to 4 cycles using hybrid 2, and up to 98% reduction was obtained even after the 4th cycle. Recyclability tests and control experiments also indicated the generation of some elemental Se through possible cleavage of some C-Se bonds of MDPSe under prolonged UV exposure during catalysis, and the Se thus generated was found to contribute to the catalytic reduction of dichromate. This study, therefore, opens new avenues for aryl selenonium moieties and their POM hybrids for potential catalytic applications.

2.
Inorg Chem ; 62(34): 13775-13792, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37575023

RESUMO

Multifunctional materials based on polyoxovanadates (POVs) have rarely been reported. Herein, we used aryl sulfonium counterions (ASCIs) bearing a salicylaldehyde-type functionality to tune the properties of decavanadate ([V10O28]6-)-based hybrids for their application in photochromism and heterogeneous oxidative desulfurization (ODS) catalysis. The counterions FHPDS ((3-formyl-4-hydroxyphenyl)dimethylsulfonium), DFHPDS ((3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium), and EFPDS ((4-ethoxy-3-formylphenyl)dimethylsulfonium) were clubbed with the decavanadate cluster to generate the hybrids (FHPDS)4[H2V10O28](H2O)4 (HY1), (DFHPDS)4[H2V10O28](H2O)3 (HY2), and (EFPDS)4[H2V10O28](H2O)6 (HY3). The photochromic properties of these hybrids were tested under 365 nm irradiation, which showed a color change from yellow to green. Different hybrids exhibited different photocoloration half-life (t1/2) values in the range of 0.77-28.38 min, suggesting the dependence of the photocoloration properties upon functional groups on the counterions. The hybrid HY2, having a 2,6-diformyl phenol moiety on the ASCI, exhibited an impressive t1/2 of 0.77 min. UP to 70% reversibility of photocoloration was achieved for the best photochromic hybrid HY2 in 48 h at 70 °C under an oxygen atmosphere. Theoretical and experimental data suggested that some of these aryl sulfonium POVs follow a different e--h+ stabilization mechanism than traditional sulfonium POM hybrids. Further, the salicylaldehyde-type ASCIs control the solubility of the decavanadate hybrids, which enables their application as heterogeneous catalysts for the selective oxidation of various sulfides. The nature of the substituents on the ASCIs also affected their catalytic activities; the counterion that facilitates the reversible V4+/V5+ switching enhances the catalytic ODS efficiency of the hybrids. Using HY2 as the catalyst, up to 99% conversion and 96% selectivity toward sulfones were achieved in dibenzothiophene (DBT) oxidation. The present study suggests a new promising approach for controlling POVs' photoresponsive and catalytic properties by using ASCIs bearing salicylaldehyde-type functional moieties.

3.
Langmuir ; 38(51): 16034-16045, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36511348

RESUMO

Dichromate (Cr2O72-) ion having chromium in its +6 oxidation state is a carcinogen and a potential threat to humans and aquatic life. The photocatalytic reduction of toxic Cr(VI) species into less toxic Cr(III) is an important target in heterogeneous catalysis. In this work, the catalytic activities of a series of Keggin cluster-based aryl sulfonium polyoxometalate hybrids, (FPDS)3[PMo12O40] (1), (FPDS)3[PW12O40] (2), (FPDS)4[SiMo12O40] (3), and (FPDS)4[SiW12O40] (4), toward the photocatalytic reduction of Cr(VI) have been analyzed and compared. Here, we used the aryl sulfonium counterions to modulate the POM cluster's solubility in water and stabilize the photogenerated e--h+ pair on the cluster. All of the hybrids 1-4 catalyzed the reduction of Cr(VI) to Cr(III) under ultraviolet (UV) irradiation, and their photocatalytic efficiencies followed the order hybrid 1 > hybrid 3 > hybrid 2 > hybrid 4, with the rate-constant values of 0.048, 0.0056, 0.0035, and 0.0028 min-1, respectively. Hybrid 1 with [PMo12O40]3- Keggin cluster exhibited the best photocatalytic activity in the series yielding a 99% reduction in 120 min. The reasons behind the best photocatalytic activity of hybrid 1 are identified as its low band gap, less charge recombination, and fast photoresponse. The electron-trapping analyses performed using AgNO3 revealed electrons as the main reactive species responsible for the photocatalytic reduction of Cr(VI). A plausible photocatalytic mechanism has also been proposed based on electron-trapping experiments. The present study shows that aryl sulfonium Keggin hybrids can function as efficient photocatalysts for Cr(VI) reduction, and their catalytic efficiency varies with the nature of the Keggin cluster.


Assuntos
Cromo , Humanos , Cromo/efeitos da radiação , Ânions , Oxirredução , Catálise
4.
Inorg Chem ; 61(50): 20561-20575, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36478457

RESUMO

A series of five mixed-counterion polyoxometalate (POM) hybrids 1-5 have been developed starting from the [SiW12O40]4- cluster and two different aryl sulfonium counterions (ASCIs), (4-hydroxyphenyl)dimethylsulfonium (HPDS) and (4-formylphenyl)dimethylsulfonium (FPDS), bearing different functional groups -OH and -CHO, respectively. The HPDS/FPDS counterion ratio in hybrids 1-5 varied as 4:0 (1), 3:1 (2), 2:2 (3), 1:3 (4), and 0:4 (5), and it resulted in a morphological transition of the self-assembly of these hybrids. Hybrid 1 exhibited spherical self-assembly, while hybrid 5 exhibited large toroidal self-assembly predominantly. The hybrids 2-4 gave a mixture of spherical, dimpled spherical, and toroidal self-assemblies in varying amounts, indicating a gradual transition of self-assembly from spherical to toroidal as the percentage of FPDS increases in the system. A plausible explanation for the differences in the self-assembly properties of these hybrids has been proposed based on the differences in the H-bonding interactions of the two counterions with the dispersion medium. The HPDS and FPDS counterions exhibited different HOMO-LUMO gaps, and their varying percentages in hybrids 1-5 led to differences in optical band gaps and photochromic activities. Hybrid 2 showed the lowest band gap value and the best photochromic activity (t1/2 = 0.72 min) in the series. The influence of the mixed-counterion strategy in catalysis has been demonstrated by evaluating the photocatalytic activity of these hybrids toward rhodamine B dye degradation. The hybrid 4, exhibiting stable toroidal self-assembly, showed the best catalytic activity in the series, probably due to a combination of reasons such as the enhanced surface area due to toroid formation and also the presence of H-bonding -OH functionality on the counterion. Therefore, the present study suggests a new method for altering the self-assembly and the materials and catalytic properties of POM hybrids through a mixed-counterion strategy.

5.
ACS Omega ; 7(28): 24838-24850, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874236

RESUMO

Styryl quinolines are biologically active compounds with properties largely depending on the substituents on the styryl and quinoline rings. The supramolecular aspects of this class of compounds are rarely explored. In this study, two new series of styryl quinoline derivatives, bearing -OH and -NO2 groups at the eighthposition of the quinoline ring and -SCH3, -OCH3, and -Br groups on the styryl ring, have been developed, and their structural, supramolecular, and cytotoxic properties have been analyzed. Crystallographic analyses revealed the exciting substituent-dependent structural and supramolecular features of these compounds. In general, the 8 -OH substituted derivatives (SA series) exhibited a non-planar molecular geometry having larger dihedral angles (5.75-59.3°) between the planes of the aromatic rings. At the same time, the 8 -NO2 substituted derivatives (SB series) exhibited a more or less planar molecular geometry, as revealed by the smaller dihedral angles (1.32-3.45°) between the aromatic rings. Multiple O-H···O, C-H···O, O-H···N, and π-π stacking interactions among the molecules lead to fascinating supramolecular architectures such as hydrogen-bonded triple helices, zig-zag 1D chains, π-π stacked infinite chains, and so forth in their crystal lattice. Hirshfeld surface analyses confirmed the existence of strong π-π stacking and other weak bonding interactions in these compounds. The preliminary cytotoxic properties of SA and SB series compounds were evaluated against the human cervical cancer cell lines (HeLa cells), which further highlighted the roles of functional substituents on the aromatic rings. The SA series compounds with the -OH substituent on the quinoline ring exhibited better cytotoxicity than the SB series compounds with a -NO2 substituent. Similarly, the electron-withdrawing group -Br on the styryl ring enhanced the cytotoxicity in both series. The IC50 values were 2.52-4.69 and 2.897-10.37 µM, respectively, for the SA and SB series compounds. Compound S3A having -OH and -Br groups on the quinoline and styryl ring, respectively, exhibited the best IC50 value of 2.52 µM among all the compounds tested. These findings confirm the relevance of the hydroxyl group in the eighth position of quinoline. In short, the present study attempts to provide a systematic analysis of the effects of aromatic ring substituents on the structural, supramolecular, and cytotoxic properties of styryl quinolines for the first time.

6.
Dalton Trans ; 51(8): 3122-3136, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35112681

RESUMO

Modulating the photocatalytic properties of polyoxometalate-organic hybrids through counterion substitution is a less explored concept. In this study, a new series of aromatic sulfonium counterions (ASCs) having the general formula X-C6H4-S(Me2)+, where X represents different functional substituents such as -H, -Cl, -Me, and -CHO at the para-position of the sulfonium moiety on a benzene ring, have been used for fine-tuning the optical bandgaps and adsorption properties of octamolybdate [Mo8O26]4- hybrids for photocatalytic dye degradation applications. The photodegradation of rhodamine B (RhB) is used as a model reaction, which follows pseudo-first-order kinetics exhibiting counterion-dependent degradation rate constants. The hybrid catalyst bearing a -CHO substituent on the ASC showed the lowest bandgap (2.91 eV) and the highest degradation rate constant (0.0141 min-1) of the series. A possible mechanism of photocatalytic dye degradation by hybrids involving the generation of reactive oxygen species (ROS) has been proposed, supported by radical scavenging studies. The intermediates formed during the photodegradation of RhB were analyzed and identified using electrospray ionization mass spectrometry (ESI-MS). The present study reveals a new strategy for tuning the photocatalytic properties of hybrids using differently functionalized ASCs and opens up new avenues for novel POM-hybrids as potential photocatalysts for environmental remediation applications.

7.
Dalton Trans ; 49(35): 12174-12179, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930678

RESUMO

Post-functionalization of Class I type polyoxometalate-organic hybrids through covalent modification of the organic counter ions in a step-wise and controlled manner is reported for the first time. The properties of the post-functionalized hybrids have been studied and compared with those of their parent hybrids revealing marked differences in properties.

8.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 5): 707-710, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31110816

RESUMO

In the title compound, C16H14N3OSCl, a Schiff base derivative of a thio-semicarbazide with a flavanone, the 4-chlorophenyl ring is inclined to the benzene ring of the chromane ring system by 30.72 (12)°. The pyran ring has an envelope conformation with the methine C atom as the flap. The mean plane of the thio-urea unit is twisted with respect to the benzene ring of the chromanone ring system, subtending a dihedral angle of 19.78 (19)°. In the crystal, mol-ecules are linked by two pairs of N-H⋯S hydrogen bonds, forming inversion dimers enclosing R 2 2(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction. The inter-molecular contacts in the crystal have been analysed using Hirshfeld surface analysis.

9.
ACS Omega ; 3(10): 14341-14348, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458123

RESUMO

An organic solid-state near-infrared (NIR)-emitter (λem = 738 nm) exhibiting large Stokes shift (Δλ = 293 nm) through the excited-state intramolecular proton transfer phenomenon has been synthesized and characterized. The present discovery points to the possibility of achieving a new family of solid-state NIR emitters starting from simple aldehyde and amine precursors.

10.
Dalton Trans ; 46(41): 14201-14209, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-28990631

RESUMO

The pyridine substituted thiourea derivative PTB-1 was synthesized and characterized by spectroscopic techniques as well as by single crystal X-ray crystallography. The metal ion sensing ability of PTB-1 was explored by various experimental (naked-eye, UV-Vis, fluorescence, mass spectrometry and 1H NMR spectroscopy) and theoretical (B3LYP/6-31G**/LANL2DZ) methods. PTB-1 exhibited a highly selective naked-eye detectable color change from colorless to dark brown and UV-Vis spectral changes for the detection of Ag+ with a detection limit of 3.67 µM in aqueous medium. The detection of Ag+ ions was achieved by test paper strip and supported silica methods. In contrast, PTB-1 exhibited a 23-fold enhanced emission at 420 nm in the presence of Hg2+ ions with a nano-molar detection limit of 0.69 nM. Finally, the sensor PTB-1 was applied successfully for the intracellular detection of Hg2+ ions in a HepG2 liver cell line, which was monitored by the use of confocal imaging techniques.


Assuntos
Mercúrio/análise , Prata/análise , Tioureia/análogos & derivados , Água/química , Cristalografia por Raios X , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Íons/química , Limite de Detecção , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia Confocal , Conformação Molecular , Piridinas/química , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Tioureia/química , Tioureia/metabolismo
11.
Inorg Chem ; 56(17): 10325-10336, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28817266

RESUMO

Engineering multifunctionality in hybrid polyoxometalates (hybrid POMs) is an interesting but scarcely explored topic. Herein, we set about engineering two important materials properties, viz., photochromism and self-separating catalysis, in a hybrid POM by modulating the counterion motif. A series of six aromatic sulfonium counterions have been developed on the basis of an aromatic sulfonium counterion motif that allows structural and electronic fine-tuning by changing substituents at multiple locations. Using the aromatic sulfonium counterions and sodium molybdate, six new aromatic sulfonium octamolybdate hybrids (1-6) having formulas (HPDS)4[Mo8O26] (1), (HMPDS)4[Mo8O26] (2), (MPDS)4[Mo8O26] (3), (APDS)4[Mo8O26] (4), (AMPDS)4[Mo8O26] (5), and (MAPDS)4[Mo8O26] (6) (where HPDS = (4-hydroxyphenyl)dimethylsulfonium, HMPDS = (4-hydroxy-2-methylphenyl)dimethylsulfonium, MPDS = (4-methoxyphenyl)dimethylsulfonium, APDS = (4-(allyloxy)phenyl)dimethylsulfonium, AMPDS = (4-(allyloxy)-2-methylphenyl)dimethylsulfonium and MAPDS = (4(methacryloyloxy)phenyl)dimethylsulfonium) have been synthesized, and their structures were confirmed by single crystal X-ray diffraction and ESI-MS analyses. Hybrids 1-6 acted as good solid-state photochromic materials exhibiting color change from white to purple under UV illumination (350 nm), and we show here that the photochromic properties of hybrids 1-6 could be modulated by changing the substitutions on the counterion motif. A coloration kinetic half-life (t1/2) of 0.33 min was achieved with this class of hybrid POMs. Hybrids 1-6 exhibited excellent self-separating catalytic properties toward the epoxidation of olefins, yielding up to 99% epoxide product with good selectivity in short time. The substituents on the aromatic sulfonium counterions helps to fine-tune the electronic, lipophilic, and solubility properties of the hybrids and thereby their catalytic properties. Moreover, we used ESI-MS analyses to understand the mechanism of catalysis exhibited by octamolybdates 1-6 in the presence of H2O2, and we succeeded in identifying a hitherto undetected intermediate, tetraperoxo-octamolybdates, shedding more light on the epoxidation mechanism.

12.
ACS Appl Mater Interfaces ; 9(1): 17-21, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28009502

RESUMO

The present report demonstrates the potential of a polyarylenesulfonium polymer, poly[methyl(4-(phenylthio)-phenyl)sulfoniumtrifluoromethanesulfonate] (PAS), as a versatile nonchemically amplified negative tone photoresist for next-generation lithography (NGL) applications starting from i-line (λ ∼ 365 nm) to extreme ultraviolet (EUV, λ ∼ 13.5 nm) lithography. PAS exhibited considerable contrast (γ), 0.08, toward EUV and patterned 20 nm features successfully.

13.
Inorg Chem ; 55(15): 7492-500, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27439021

RESUMO

Using 4-substituted derivatives of phenol-based compartmental Schiff-base hydroxyl-rich ligand, four multifunctional binuclear Zn(II) complexes have been synthesized and characterized. The photophysical properties of these complexes were explored in the solid state, in solutions, and in poly(methyl methacrylate) (PMMA) matrix, which revealed their good potential as tunable solid state emitters. Some of these complexes acted as efficient catalysts for the transesterification of esters and canola oil showing their potential in biodiesel generation. Mechanistic investigations using ESI-MS revealed that the transesterification catalyzed by these complexes proceeds through two types of acyl intermediates.

14.
J Fluoresc ; 26(4): 1439-45, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27262442

RESUMO

Benzimidazole based compound 3 is designed and synthesized. The compound 3 is evaluated as fluorogenic sensor for metal ions in mixed aqueous solutions. Among all the metal ions tested, the compound 3 selectively senses Zn(2+) ions. The imine bond of 3 gets cleaved by Zn(2+) ions. Thus, 3 behave as 'turn on' fluorescent chemodosimeter for Zn(2+) ions with limit of detction in micromolar range. Furthurmore, we demonstated that 3 can detect Zn(2+) ions in cells of Allium cepa. Graphical Abstract Benzimidazole based ligand 3 is designed and synthesized which behave as chemodosimeter for Zn(2+) ions. We further demonstrated that 3 can detect Zn(2+) ions in cells of Allium cepa.


Assuntos
Benzimidazóis/química , Corantes Fluorescentes/química , Água/química , Zinco/análise , Zinco/química , Imagem Molecular , Cebolas/citologia , Cebolas/metabolismo , Espectrometria de Fluorescência , Zinco/metabolismo
15.
Sci Rep ; 6: 22664, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975782

RESUMO

Given the importance of complex nanofeatures in the filed of micro-/nanoelectronics particularly in the area of high-density magnetic recording, photonic crystals, information storage, micro-lens arrays, tissue engineering and catalysis, the present work demonstrates the development of new methodology for patterning complex nanofeatures using a recently developed non-chemically amplified photoresist (n-CARs) poly(4-(methacryloyloxy)phenyl)dimethylsulfoniumtriflate) (polyMAPDST) with the help of extreme ultraviolet lithography (EUVL) as patterning tool. The photosensitivity of polyMAPDST is mainly due to the presence of radiation sensitive trifluoromethanesulfonate unit (triflate group) which undergoes photodegradation upon exposure with EUV photons, and thus brings in polarity change in the polymer structure. Integration of such radiation sensitive unit into polymer network avoids the need of chemical amplification which is otherwise needed for polarity switching in the case of chemically amplified photoresists (CARs). Indeed, we successfully patterned highly ordered wide-raging dense nanofeatures that include nanodots, nanowaves, nanoboats, star-elbow etc. All these developed nanopatterns have been well characterized by FESEM and AFM techniques. Finally, the potential of polyMAPDST has been established by successful transfer of patterns into silicon substrate through adaptation of compatible etch recipes.

16.
Chemistry ; 21(51): 18557-62, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26502775

RESUMO

A new aromatic sulfonium counter-ion motif for polyoxometalate (POM) clusters with potential for structural and electronic fine-tuning has been designed. Its two derivatives 4-hydroxyphenyl dimethylsulfonium triflate (HPDST) and 4-(allyloxy)phenyl dimethylsulfonium triflate (APDST) exhibit ionic liquid behaviors under ambient conditions. HPDST and APDST are used to develop a series of aromatic sulfonium POM hybrids (HPDS/APDS)n[XMo12 O40] (HPDS and APDS are the cations of HPDST and APDST, respectively; X=P or Si; n=3 or 4), which are tested for photochromic behavior. On exposure to UV light, these POM hybrids undergo color change from yellow to green/blue. The coloration kinetics half lives (t1/2) are less for APDS-based hybrids than for HPDS-based hybrids, suggesting that alkyl substitution on the phenolic group helps to fine-tune the electron availability on the sulfonium moiety and hence to control the photochromic behavior of the POM hybrids. The t1/2 values of these hybrids are considerably lower than those of the reported aliphatic sulfonium POM hybrids. We have also demonstrated the application of photoreduced POM hybrids as catalysts for the reduction of 4-nitrophenol to 4-aminophenol.

17.
Chem Commun (Camb) ; 51(41): 8630-3, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25900154

RESUMO

Triangular-shaped inorganic-organic hybrids with three polyoxometalate (POM) clusters as polar head groups are found to self-assemble into blackberry structures in water-acetone solvent mixtures containing 65-95 vol% acetone. The driving force for the self-assembly of the hybrids is shown to originate from the electrostatic counterion-cluster interactions.

18.
Chemistry ; 21(5): 2250-8, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25431365

RESUMO

Two new polyoxometalate (POM)-based hybrid monomers (Bu4 N)5 (H)[P2 V3 W15 O59 {(OCH2 )3 CNHCO(CH3 )CCH2 }] (2) and (S(CH3 )2 C6 H4 OCOC(CH3 )=CH2 )6 [PV 2Mo10 O40 ] (5) were developed by grafting polymerizable organic units covalently or electrostatically onto Wells-Dawson and Keggin-type clusters and were characterized by analytical and spectroscopic techniques including ESI-MS and/or single-crystal X-ray diffraction analyses. Radical initiated polymerization of 2 and 5 with organic monomers (methacryloyloxy)phenyldimethylsulfonium triflate (MAPDST) and/or methylmethacrylate (MMA) yielded a new series of POM/polymer hybrids that were characterized by (1) H, (31) P NMR and IR spectroscopic techniques, gel-permeation chromatography as well as thermal analyses. Preliminary tests were conducted on these POM/polymer hybrids to evaluate their properties as photoresists using electron beam (E-beam)/extreme ultraviolet (EUV) lithographic techniques. It was observed that the POM/polymer hybrid of 2 with MAPDST exhibited improved sensitivity under EUV lithographic conditions in comparison to the MAPDST homopolymer resist possibly due to the efficient photon harvesting by the POM clusters from the EUV source.

19.
Mater Sci Eng C Mater Biol Appl ; 43: 418-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25175231

RESUMO

New carbazole based AIEE material is synthesized with fluoro group which shows ESIPT induced AIEE in H2O:THF (80:20, v/v). The material selectively recognizes Cu(2+) and CN(-) ions in contrasting modes with detection limits of 5 × 10(-6)Mol L(-1) and 12×10(-5)Mol L(-1) respectively and acts as a dual action chemosensor. The recognition of copper has also been observed in human serum, thus facilitating the detection of increased level of free Cu(2+) ions and its quantification in human serum.


Assuntos
Carbazóis/química , Cobre/sangue , Cianetos/farmacologia , Microscopia Eletrônica de Transmissão , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho
20.
Dalton Trans ; 43(35): 13299-306, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25056090

RESUMO

An imatinib intermediate, 6-methyl-N-[4-(pyridin-3-yl)pyrimidin-2-yl]benzene-1,3-diaminepyridopyrimidotoluidine (PPT-1), was developed for the colorimetric sensing of Cu(2+) ions in aqueous solution. With Cu(2+), the receptor PPT-1 showed a highly selective naked-eye detectable color change from colorless to red over the seventy other tested cations. The colorimetric sensing ability of PPT-1 was successfully utilized in the preparation of test strips and supported silica for the real samples analysis to detect Cu(2+) ions from 100% aqueous environment. Moreover, the iodide-sensing ability of receptor PPT-1 was explored among the ten examined anions.


Assuntos
Benzamidas/química , Cobre/análise , Iodetos/análise , Piperazinas/química , Pirimidinas/química , Água/análise , Colorimetria/métodos , Mesilato de Imatinib , Íons , Soluções/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...