Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 228: 116302, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38763261

RESUMO

Spinal cord injury (SCI) afflicts millions of individuals globally. There are few therapies available to patients. Ascending and descending excitatory glutamatergic neural circuits in the central nervous system are disrupted by SCI, making α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) a potential therapeutic drug target. Emerging research in preclinical models highlights the involvement of AMPARs in vital processes following SCI including breathing, pain, inflammation, bladder control, and motor function. However, there are no clinical trial data reported in this patient population to date. No work on the role of AMPA receptors in sexual dysfunction after SCI has been disclosed. Compounds with selective antagonist and potentiating effects on AMPA receptors have benefit in animal models of SCI, with antagonists generally showing protective effects early after injury and potentiators (ampakines) producing improved breathing and bladder function. The role of AMPARs in pathophysiology and recovery after SCI depends upon the time post injury, and the timing of AMPAR augmentation or antagonism. The roles of inflammation, synaptic plasticity, sensitization, neurotrophic factors, and neuroprotection are considered in this context. The data summarized and discussed in this paper document proof of principle and strongly encourage additional studies on AMPARs as novel gateways to therapeutic benefit for patients suffering from SCI. The availability of both AMPAR antagonists such as perampanel and AMPAR allosteric modulators (i.e., ampakines) such as CX1739, that have been safely administered to humans, provides an expedited means of clinical inquiry for possible therapeutic advances.


Assuntos
Receptores de AMPA , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Animais , Humanos , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA