Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(2): 377-385, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042343

RESUMO

RNA is prone to both chemical degradation and/or physical instability. Some of the factors affecting stability of RNA in solution are its length, 3' poly A tail and 5' cap integrity, excipients, buffering species, pH of the solution, nucleases, and divalent cations. In this work, we showed the effect of temperature, messenger RNA (mRNA) length, buffering species, pH of the solution, and the concentration of mRNA on its chemical and physical stability. Our thermodynamic analysis of a 4000 nucleotide-long mRNA measured an activation energy of 31.5 kcal/mol normalized per phosphodiester backbone. We found mRNA length to be negatively correlated to its stability. Buffering species and pH of the solution affected mRNA integrity along with affecting the onset temperature of melting obtained by Differential Scanning Calorimetry (DSC) thermograms. It was also found that increasing the concentration of mRNA in solution increased its stability.


Assuntos
RNA , Temperatura , RNA/genética , Termodinâmica , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , RNA Mensageiro/genética , Dicroísmo Circular
2.
Chem Res Toxicol ; 28(9): 1823-30, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26293472

RESUMO

Colistin and polymyxin B are effective treatment options for Gram-negative resistant bacteria but are used as last-line therapy due to their dose-limiting nephrotoxicity. A critical factor in developing safer polymyxin analogues is understanding accumulation of the drugs and their metabolites, which is currently limited due to the lack of effective techniques for analysis of these challenging molecules. Mass spectrometry imaging (MSI) allows direct detection of targets (drugs, metabolites, and endogenous compounds) from tissue sections. The presented study exemplifies the utility of MSI by measuring the distribution of polymyxin B1, colistin, and polymyxin B nonapeptide (PMBN) within dosed rat kidney tissue sections. The label-free MSI analysis revealed that the nephrotoxic compounds (polymyxin B1 and colistin) preferentially accumulated in the renal cortical region. The less nephrotoxic analogue, polymyxin B nonapeptide, was more uniformly distributed throughout the kidney. In addition, metabolites of the dosed compounds were detected by MSI. Kidney homogenates were analyzed using LC/MS/MS to determine total drug exposure and for metabolite identification. To our knowledge, this is the first time such techniques have been utilized to measure the distribution of polymyxin drugs and their metabolites. By simultaneously detecting the distribution of drug and drug metabolites, MSI offers a powerful alternative to tissue homogenization analysis and label or antibody-based imaging.


Assuntos
Rim/efeitos dos fármacos , Polimixinas/toxicidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Cromatografia Líquida , Masculino , Polimixinas/farmacocinética , Ratos , Ratos Wistar
3.
ACS Chem Biol ; 7(11): 1866-72, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22908966

RESUMO

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity. TK-666 has potent, broad-spectrum Gram-positive microbiological activity (including activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus), bactericidal action with rapid killing kinetics, excellent target selectivity over the human ortholog, and low resistance rates. We demonstrate in vivo efficacy against S. aureus in a murine infected-thigh model. This work presents the first validation of TMK as a compelling antibacterial target and provides a rationale for pursuing novel clinical candidates for treating Gram-positive infections through TMK.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Enterococcus/efeitos dos fármacos , Enterococcus/enzimologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia
4.
Chem Biol Drug Des ; 71(2): 97-105, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18179464

RESUMO

Targeted disruption of the pp60(src) (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Here, we describe structure activity relationships of a novel series of carbon-linked, 2-substituted purines that led to the identification of AP23451 as a potent inhibitor of Src tyrosine kinase with antiresorptive activity in vivo. AP23451 features the use of an arylphosphinylmethylphosphinic acid moiety which confers bone-targeting properties to the molecule, thereby increasing local concentrations of the inhibitor to actively resorbing osteoclasts at the bone interface. AP23451 exhibited an IC50 = 68 nm against Src kinase; an X-ray crystal structure of the molecule complexed with Src detailed the molecular interactions responsible for its Src inhibition. In vivo, AP23451 demonstrated a dose-dependent decrease in PTH-induced hypercalcemia. Moreover, AP23517, a structurally and biochemically similar molecule with comparable activity (IC50 = 73 nm) except devoid of the bone-targeting element, demonstrated significantly reduced in vivo efficacy, suggesting that Src activity was necessary but not sufficient for in vivo activity in this series of compounds.


Assuntos
Adenina/análogos & derivados , Reabsorção Óssea/tratamento farmacológico , Organofosfonatos/farmacologia , Purinas/farmacologia , Quinases da Família src/antagonistas & inibidores , Adenina/química , Adenina/farmacologia , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Hipercalcemia , Concentração Inibidora 50 , Estrutura Molecular , Organofosfonatos/química , Osteoporose/tratamento farmacológico , Hormônio Paratireóideo/farmacologia , Ácidos Fosfínicos , Purinas/síntese química , Relação Estrutura-Atividade , Quinases da Família src/química
5.
Bioorg Med Chem Lett ; 13(18): 3067-70, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12941335

RESUMO

Novel bone-targeted 2,6,9-trisubstituted purine template-based inhibitors of Src tyrosine kinase are described. Drug design studies of known purine compounds revealed that both positions-2 and -6 were suitable for incorporating bone-seeking moieties. A variety of bone-targeting groups with different affinity to hydroxyapatite were utilized in the study. Compound 3d was determined to be a potent Src inhibitor and was quite selective against a panel of other protein kinases.


Assuntos
Doenças Ósseas/tratamento farmacológico , Purinas/síntese química , Quinases da Família src/antagonistas & inibidores , Trifosfato de Adenosina/análogos & derivados , Animais , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Durapatita/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Purinas/farmacologia , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 13(18): 3071-4, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12941336

RESUMO

The design of bone-targeted pyrido[2,3-d]pyrimidin-7-ones as Src tyrosine kinase inhibitors is described. Leveraging SAR from known compounds and using structure-based methods, we were able to rapidly incorporate bone binding components, which maintained, and even increased potency against the target enzyme. Compound 4 displayed a high affinity for hydroxyapatite, a major constituent of bone, and demonstrated antiresoprtive activity in our cell-based assay.


Assuntos
Doenças Ósseas/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Pirimidinonas/síntese química , Quinases da Família src/antagonistas & inibidores , Animais , Reabsorção Óssea/tratamento farmacológico , Simulação por Computador , Dentina/metabolismo , Desenho de Fármacos , Durapatita/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Osteoclastos/efeitos dos fármacos , Pirimidinonas/farmacologia , Coelhos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...