Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(39): e2102356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34355435

RESUMO

The chemical bond is one of the most powerful, yet much debated concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding was identified in several higher chalcogenides, characterized by a unique property portfolio, unconventional bond breaking, and sharing of about one electron between adjacent atoms. This metavalent bond is a fundamental type of bonding in solids, besides covalent, ionic, and metallic bonding, raising the pertinent question as to whether there is a well-defined transition between metavalent and covalent bonds. Here, three different pseudo-binary lines, namely, GeTe1- x Sex , Sb2 Te3(1- x ) Se3 x , and Bi2-2 x Sb2 x Se3 , are studied, and a sudden change in several properties, including optical absorption ε2 (ω), optical dielectric constant ε∞ , Born effective charge Z*, electrical conductivity, as well as bond breaking behavior for a critical Se or Sb concentration, is evidenced. These findings provide a blueprint to experimentally explore the influence of metavalent bonding on attractive properties of phase-change materials and thermoelectrics. Particularly important is its impact on optical properties, which can be tailored by the amount of electrons shared between adjacent atoms. This correlation can be used to design optoelectronic materials and to explore systematic changes in chemical bonding with stoichiometry and atomic arrangement.

2.
Phys Chem Chem Phys ; 22(43): 24895-24906, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33025984

RESUMO

The atomic scale structure of amorphous AsTe3 is investigated through X-ray diffraction, first-principles molecular dynamics (FPMD), and machine learning interatomic potentials (ML-GAP) obtained by exploiting the ab initio data. We obtain good agreement between the measured and modelled diffraction patterns. Our FPMD results show that As and Te obey the 8-N rule with average coordination numbers of 3 and 2, respectively. We find that small fractions of under and over coordinated As and Te atoms are present in the amorphous phase with about 6% (FPMD), and 13% (ML-GAP) of 3-fold Te. As is found at the center of pyramidal structures predominantly linked through Ten chains rather than rings. Despite the low As concentration in AsTe3, its local environment features a very high chemical disorder that manifests through the occurrence of homopolar bonds including at least 57% of As atoms.

3.
Nanomaterials (Basel) ; 8(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326574

RESUMO

Platinum is the most employed electrocatalyst for the reactions taking place in energy converters, such as the oxygen reduction reaction in proton exchange membrane fuel cells, despite being a very low abundant element in the earth's crust and thus extremely expensive. The search for more active electrocatalysts with ultra-low Pt loading is thus a very active field of investigation. Here, surface-limited redox replacement (SLRR) that utilizes the monolayer-limited nature of underpotential deposition (UPD) was used to prepare ultrathin deposits of Pt, using Te as sacrificial metal. Cyclic voltammetry and anodic potentiodynamic scanning experiments have been performed to determine the optimal deposition conditions. Physicochemical and electrochemical characterization of the deposited Pt was carried out. The deposit comprises a series of contiguous Pt islands that form along the grain interfaces of the Au substrate. The electrochemical surface area (ECSA) of the Pt deposit obtained after 5 replacements, estimated to be 18 m²/g, is in agreement with the ECSA of extended surface catalysts on flat surfaces.

4.
R Soc Open Sci ; 5(1): 171401, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29410843

RESUMO

The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge0.25Se0.75)(100-x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.

5.
Inorg Chem ; 57(2): 754-767, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29266938

RESUMO

Recrystallization of amorphous compounds can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel binary or ternary compounds and control the transport properties of the obtained glass ceramics. Here, we report on a systematic study of the Cu-As-Te glassy system and show that under specific synthesis conditions using the spark-plasma-sintering technique, the α-As2Te3 and ß-As2Te3 binary phases and the previously unreported AsTe3 phase can be selectively crystallized within an amorphous matrix. The microstructures and transport properties of three different glass ceramics, each of them containing one of these phases with roughly the same crystalline fraction (∼30% in volume), were investigated in detail by means of X-ray diffraction, scanning electron microscopy, neutron thermodiffraction, Raman scattering (experimental and lattice-dynamics calculations), and transport-property measurements. The physical properties of the glass ceramics are compared with those of both the parent glasses and the pure crystalline phases that could be successfully synthesized. SEM images coupled with Raman spectroscopy evidence a "coast-to-island" or dendriticlike microstructure with microsized crystallites. The presence of the crystallized phase results in a significant decrease in the electrical resistivity while maintaining the thermal conductivity to low values. This study demonstrates that new compounds with interesting transport properties can be obtained by recrystallization, which in turn provides a tuning parameter for the transport properties of the parent glasses.

6.
Phys Chem Chem Phys ; 18(19): 13449-58, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27126718

RESUMO

The adsorption and gas separation properties of amorphous porous chalcogenides such as GeS2 are investigated using statistical mechanics molecular simulation. Using a realistic molecular model of such amorphous adsorbents, we show that they can be used efficiently to separate different gases relevant to environmental and energy applications (H2, CO2, CH4, N2). In addition to shedding light on the microscopic adsorption mechanisms, we show that coadsorption in this novel class of porous materials can be described using the ideal adsorbed solution theory (IAST). Such a simple thermodynamic model, which allows avoiding complex coadsorption measurements, describes the adsorption of mixture from pure component adsorption isotherms. Our results, which are found to be in good agreement with available experimental data, paves the way for the design of gas separation membranes using the large family of porous chalcogenides.

7.
Inorg Chem ; 54(20): 9936-47, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26418840

RESUMO

Metastable ß-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K. Crystallizing glassy-As2Te3 leads to multiphase samples, while ß-As2Te3 could indeed be synthesized with good phase purity (97%) by melt quenching. As expected, ß-As2Te3 reconstructively transforms into stable α-As2Te3 (C2/m, a = 14.337 Å, b = 4.015 Å, c = 9.887 Å, and ß = 95.06°) at 480 K. This ß â†’ α transformation can be seen as the displacement of part of the As atoms from their As2Te3 layers into the van der Waals bonding interspace. Upon cooling, ß-As2Te3 displacively transforms in two steps below T(S1) = 205-210 K and T(S2) = 193-197 K into a new ß'-As2Te3 allotrope. These reversible and first-order phase transitions give rise to anomalies in the resistance and in the calorimetry measurements. The new monoclinic ß'-As2Te3 crystal structure (P2(1)/m, a = 6.982 Å, b = 16.187 Å, c = 10.232 Å, ß = 103.46° at 20 K) was solved from Rietveld refinements of X-ray and neutron powder patterns collected at low temperatures. These analyses showed that the distortion undergone by ß-As2Te3 is accompanied by a 4-fold modulation along its b axis. In agreement with our experimental results, electronic structure calculations indicate that all three structures are semiconducting with the α-phase being the most stable one and the ß'-phase being more stable than the ß-phase. These calculations also confirm the occurrence of a van der Waals interspace between covalently bonded As2Te3 layers in all three structures.

8.
Langmuir ; 31(24): 6742-51, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26030830

RESUMO

Besides the abundant literature on ionic liquids in porous silica and carbon, the confinement of such intriguing liquids in porous chalcogenides has received very little attention. Here, molecular simulation is employed to study the structural and dynamical properties of a typical ionic liquid confined in a realistic molecular model of amorphous chalcogenide with various pore sizes and surface chemistries. Using molecular dynamics in the isobaric-isothermal (NPT) ensemble, we consider confinement conditions relevant to real samples. Both the structure and self-dynamics of the confined phase are found to depend on the surface-to-volume ratio of the host confining material. Consequently, most properties of the confined ionic liquid can be written as a linear combination of surface and bulk-like contributions, arising from the ions in contact with the surface and the ions in the pore center, respectively. On the other hand, collective dynamical properties such as the ionic conductivity remain close to their bulk counterpart and almost insensitive to pore size and surface chemistry. These results, which are in fair agreement with available experimental data, provide a basis for the development of novel applications using hybrid organic-inorganic solids consisting of ionic liquids confined in porous chalcogenides.

9.
Opt Lett ; 36(15): 2922-4, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21808359

RESUMO

The feasibility of all-telluride integrated optics devices based on waveguides presenting a single-mode behavior in the spectral range (10-20 µm) is demonstrated. These waveguides are constituted of a several micrometer thick Te(82)Ge(18) film deposited onto a Te(75)Ge(15)Ga(10) bulk glass substrate by thermal coevaporation and further etched by reactive ion etching under the CHF(3)/O(2)/Ar atmosphere. The obtained structures were proven to behave as channel waveguides with a good single-mode transmission over the whole spectral range. These results allowed validating our technological solution for the fabrication of integrated optics modal filters for spatial interferometry.


Assuntos
Raios Infravermelhos , Dispositivos Ópticos , Telúrio/química , Impedância Elétrica , Vidro/química
10.
Acta Crystallogr B ; 64(Pt 1): 1-11, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18204206

RESUMO

A temperature-dependent structural investigation of the substituted argyrodite Ag(7)GeSe(5)I has been carried out on a single crystal from 15 to 475 K, in steps of 50 K, and correlated to its conductivity properties. The argyrodite crystallizes in a cubic cell with the F\bar 43m space group. The crystal structure exhibits high static and dynamic disorder which has been efficiently accounted for using a combination of (i) Gram-Charlier development of the Debye-Waller factors for iodine and silver, and (ii) a split-atom model for Ag(+) ions. An increased delocalization of the mobile d(10) Ag(+) cations with temperature has been clearly shown by the inspection of the joint probability-density functions; the corresponding diffusion pathways have been determined.

11.
Opt Express ; 14(18): 8459-69, 2006 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19529223

RESUMO

Nulling interferometry is an astronomical technique that requires to combine extremely flat wavefronts to achieve a deep rejection ratio in order to detect Earth-like planets in the mid-infrared band [5 - 20 microm]. Similarly to what is done in the near-infrared, high spatial filtering of the incoming beams can be achieved using single-mode waveguides operating in the mid-infrared. An appreciable reduction of the instrumental complexity is also possible using integrated optics (IO) devices in this spectral range. The lack of single-mode guided optics in the mid-infrared has motivated the present technological study to demonstrate the feasibility of dielectric waveguides functioning at longer wavelengths. We propose to use selenide and telluride components to pursue the development of more complex IO functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...