Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Green Chem ; 24(12): 4845-4858, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35813357

RESUMO

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.

2.
BMC Biotechnol ; 19(1): 41, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253157

RESUMO

BACKGROUND: Pythium irregulare is an oleaginous Oomycete able to accumulate large amounts of lipids, including Eicosapentaenoic acid (EPA). EPA is an important and expensive dietary supplement with a promising and very competitive market, which is dependent on fish-oil extraction. This has prompted several research groups to study biotechnological routes to obtain specific fatty acids rather than a mixture of various lipids. Moreover, microorganisms can use low cost carbon sources for lipid production, thus reducing production costs. Previous studies have highlighted the production of EPA by P. irregulare, exploiting diverse low cost carbon sources that are produced in large amounts, such as vinasse, glycerol, and food wastewater. However, there is still a lack of knowledge about its biosynthetic pathways, because no functional annotation of any Pythium sp. exists yet. The goal of this work was to identify key genes and pathways related to EPA biosynthesis, in P. irregulare CBS 494.86, by sequencing and performing an unprecedented annotation of its genome, considering the possibility of using wastewater as a carbon source. RESULTS: Genome sequencing provided 17,727 candidate genes, with 3809 of them associated with enzyme code and 945 with membrane transporter proteins. The functional annotation was compared with curated information of oleaginous organisms, understanding amino acids and fatty acids production, and consumption of carbon and nitrogen sources, present in the wastewater. The main features include the presence of genes related to the consumption of several sugars and candidate genes of unsaturated fatty acids production. CONCLUSIONS: The whole metabolic genome presented, which is an unprecedented reconstruction of P. irregulare CBS 494.86, shows its potential to produce value-added products, in special EPA, for food and pharmaceutical industries, moreover it infers metabolic capabilities of the microorganism by incorporating information obtained from literature and genomic data, supplying information of great importance to future work.


Assuntos
Ácido Eicosapentaenoico/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pythium/genética , Suplementos Nutricionais , Proteínas Fúngicas/metabolismo , Microbiologia Industrial/métodos , Pythium/metabolismo
3.
AMB Express ; 6(1): 103, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27807811

RESUMO

Biomass is abundant, renewable and useful for biofuel production as well as chemical priming for plastics and composites. Deconstruction of biomass by enzymes is perceived as recalcitrant while an inclusive breakdown mechanism remains to be discovered. Fungi such as Myceliophthora thermophila M77 appear to decompose natural biomass sources quite well. This work reports on this fungus fermentation property while producing cellulolytic enzymes using natural biomass substrates. Little hydrolytic activity was detected, insufficient to explain the large amount of biomass depleted in the process. Furthermore, this work makes a comprehensive account of extracellular proteins and describes how secretomes redirect their qualitative protein content based on the nature and chemistry of the nutritional source. Fungus grown on purified cellulose or on natural biomass produced secretomes constituted by: cellobiohydrolases, cellobiose dehydrogenase, ß-1,3 glucanase, ß-glucosidases, aldose epimerase, glyoxal oxidase, GH74 xyloglucanase, galactosidase, aldolactonase and polysaccharide monooxygenases. Fungus grown on a mixture of purified hemicellulose fractions (xylans, arabinans and arabinoxylans) produced many enzymes, some of which are listed here: xylosidase, mixed ß-1,3(4) glucanase, ß-1,3 glucanases, ß-glucosidases, ß-mannosidase, ß-glucosidases, galactosidase, chitinases, polysaccharide lyase, endo ß-1,6 galactanase and aldose epimerase. Secretomes produced on natural biomass displayed a comprehensive set of enzymes involved in hydrolysis and oxidation of cellulose, hemicellulose-pectin and lignin. The participation of oxidation reactions coupled to lignin decomposition in the breakdown of natural biomass may explain the discrepancy observed for cellulose decomposition in relation to natural biomass fermentation experiments.

4.
PLoS One ; 7(12): e50571, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227186

RESUMO

Plant feedstocks are at the leading front of the biofuel industry based on the potential to promote economical, social and environmental development worldwide through sustainable scenarios related to energy production. Penicillium echinulatum is a promising strain for the bioethanol industry based on its capacity to produce large amounts of cellulases at low cost. The secretome profile of P. echinulatum after grown on integral sugarcane bagasse, microcrystalline cellulose and three types of pretreated sugarcane bagasse was evaluated using shotgun proteomics. The comprehensive chemical characterization of the biomass used as the source of fungal nutrition, as well as biochemical activity assays using a collection of natural polysaccharides, were also performed. Our study revealed that the enzymatic repertoire of P. echinulatum is geared mainly toward producing enzymes from the cellulose complex (endogluganases, cellobiohydrolases and ß-glucosidases). Glycoside hydrolase (GH) family members, important to biomass-to-biofuels conversion strategies, were identified, including endoglucanases GH5, 7, 6, 12, 17 and 61, ß-glycosidase GH3, xylanases GH10 and GH11, as well as debranching hemicellulases from GH43, GH62 and CE2 and pectinanes from GH28. Collectively, the approach conducted in this study gave new insights on the better comprehension of the composition and degradation capability of an industrial cellulolytic strain, from which a number of applied technologies, such as biofuel production, can be generated.


Assuntos
Penicillium/isolamento & purificação , Saccharum/microbiologia , Biomassa , Cromatografia Líquida , Microscopia Eletrônica de Varredura , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Espectrometria de Massas em Tandem
5.
J Biotechnol ; 122(4): 453-62, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16253372

RESUMO

Polyhydroxybutyrate (PHB) is the most studied among a wide variety of polyhydroxyalkanoates, bacterial biodegradable polymers known as potential substitutes for conventional plastics. This work aimed at evaluating the use of enzymes to recover and purify the PHB produced by Ralstonia eutropha DSM545. Screening experiments allowed the selection of trypsin, bromelain and lysozyme among six enzymes, based on their efficiency in lysing cells of a non-PHB producing R. eutropha strain. Then, process conditions for high efficiency in PHB purification from the DSM545 cells were searched for the enzymes previously selected. The best result was achieved with 2.0% of bromelain (enzyme mass per biomass), equivalent to 14.1 U ml(-1), at 50 degrees C and pH 9.0, resulting in 88.8% PHB purity. Aiming at improving the process efficiency and reducing the enzyme cost, experiments were carried out with pancreatin, leading to 90.0% polymer purity and an enzyme cost three times lower than the one obtained with bromelain. The molecular mass analysis of PHB showed no polymer degradation. Therefore, this work demonstrates the potential of using enzymes in order to recover and purify PHB and bacterial biopolymers in general.


Assuntos
Cupriavidus necator/metabolismo , Enzimas/metabolismo , Hidroxibutiratos/isolamento & purificação , Poliésteres/isolamento & purificação , Celulase/metabolismo , Celulase/farmacologia , Meios de Cultura , Cupriavidus necator/citologia , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Enzimas/farmacologia , Estudos de Avaliação como Assunto , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Muramidase/metabolismo , Muramidase/farmacologia , Poliésteres/química , Poliésteres/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...