Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(4): 96, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017803

RESUMO

KEY MESSAGE: Genetic mapping of some key plant architectural traits in a vegetable type and an oleiferous B. juncea cross revealed QTL and candidate genes for breeding more productive ideotypes. Brassica juncea (AABB, 2n = 36), commonly called mustard, is an allopolyploid crop of recent origin but contains considerable morphological and genetic variation. An F1-derived doubled haploid population developed from a cross between an Indian oleiferous line, Varuna, and a Chinese stem type vegetable mustard, Tumida showed significant variability for some key plant architectural traits-four stem strength-related traits, stem diameter (Dia), plant height (Plht), branch initiation height (Bih), number of primary branches (Pbr), and days to flowering (Df). Multi-environment QTL analysis identified twenty Stable QTL for the above-mentioned nine plant architectural traits. Though Tumida is ill-adapted to the Indian growing conditions, it was found to contribute favorable alleles in Stable QTL for five architectural traits-press force, Dia, Plht, Bih, and Pbr; these QTL could be used to breed superior ideotypes in the oleiferous mustard lines. A QTL cluster on LG A10 contained Stable QTL for seven architectural traits that included major QTL (phenotypic variance ≥ 10%) for Df and Pbr, with Tumida contributing the trait-enhancing alleles for both. Since early flowering is critical for the cultivation of mustard in the Indian subcontinent, this QTL cannot be used for the improvement of Pbr in the Indian gene pool lines. Conditional QTL analysis for Pbr, however, identified other QTL which could be used for the improvement of Pbr without affecting Df. The Stable QTL intervals were mapped on the genome assemblies of Tumida and Varuna for the identification of candidate genes.


Assuntos
Brassica , Melhoramento Vegetal , Haploidia , Brassica/anatomia & histologia , Brassica/genética , Verduras/genética , Locos de Características Quantitativas , Fenótipo , Caules de Planta , Brotos de Planta , Flores
2.
Plant Biotechnol J ; 19(3): 602-614, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073461

RESUMO

Brassica juncea (AABB), commonly referred to as mustard, is a natural allopolyploid of two diploid species-B. rapa (AA) and B. nigra (BB). We report a highly contiguous genome assembly of an oleiferous type of B. juncea variety Varuna, an archetypical Indian gene pool line of mustard, with ~100× PacBio single-molecule real-time (SMRT) long reads providing contigs with an N50 value of >5 Mb. Contigs were corrected for the misassemblies and scaffolded with BioNano optical mapping. We also assembled a draft genome of B. nigra (BB) variety Sangam using Illumina short-read sequencing and Oxford Nanopore long reads and used it to validate the assembly of the B genome of B. juncea. Two different linkage maps of B. juncea, containing a large number of genotyping-by-sequencing markers, were developed and used to anchor scaffolds/contigs to the 18 linkage groups of the species. The resulting chromosome-scale assembly of B. juncea Varuna is a significant improvement over the previous draft assembly of B. juncea Tumida, a vegetable type of mustard. The assembled genome was characterized for transposons, centromeric repeats, gene content and gene block associations. In comparison to the A genome, the B genome contains a significantly higher content of LTR/Gypsy retrotransposons, distinct centromeric repeats and a large number of B. nigra specific gene clusters that break the gene collinearity between the A and the B genomes. The B. juncea Varuna assembly will be of major value to the breeding work on oleiferous types of mustard that are grown extensively in south Asia and elsewhere.


Assuntos
Genoma de Planta , Mostardeira , Ásia , Mapeamento Cromossômico , Cromossomos , Genoma de Planta/genética , Mostardeira/genética , Melhoramento Vegetal
3.
BMC Genomics ; 21(1): 887, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308149

RESUMO

BACKGROUND: Brassica nigra (BB), also called black mustard, is grown as a condiment crop in India. B. nigra represents the B genome of U's triangle and is one of the progenitor species of B. juncea (AABB), an important oilseed crop of the Indian subcontinent. We report the genome assembly of B. nigra variety Sangam. RESULTS: The genome assembly was carried out using Oxford Nanopore long-read sequencing and optical mapping. A total of 1549 contigs were assembled, which covered ~ 515.4 Mb of the estimated ~ 522 Mb of the genome. The final assembly consisted of 15 scaffolds that were assigned to eight pseudochromosomes using a high-density genetic map of B. nigra. Around 246 Mb of the genome consisted of the repeat elements; LTR/Gypsy types of retrotransposons being the most predominant. The B genome-specific repeats were identified in the centromeric regions of the B. nigra pseudochromosomes. A total of 57,249 protein-coding genes were identified of which 42,444 genes were found to be expressed in the transcriptome analysis. A comparison of the B genomes of B. nigra and B. juncea revealed high gene colinearity and similar gene block arrangements. A comparison of the structure of the A, B, and C genomes of U's triangle showed the B genome to be divergent from the A and C genomes for gene block arrangements and centromeric regions. CONCLUSIONS: A highly contiguous genome assembly of the B. nigra genome reported here is an improvement over the previous short-read assemblies and has allowed a comparative structural analysis of the A, B, and C genomes of the species belonging to the U's triangle. Based on the comparison, we propose a new nomenclature for B. nigra pseudochromosomes, taking the B. rapa pseudochromosome nomenclature as the reference.


Assuntos
Genoma de Planta , Mostardeira , Mapeamento Cromossômico , Índia , Mostardeira/genética , Retroelementos
4.
Front Plant Sci ; 10: 1690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998351

RESUMO

White rust, causal agent oomycete Albugo candida, is a significant disease of the cultivated Brassica species. The Indian gene pool lines of oilseed mustard, Brassica juncea, are highly susceptible to the pathogen. Resistance to A. candida has been reported in the east European gene pool lines of mustard and mapped to LG A4 in line Heera and LG A5 in line Donskaja-IV. A new resistance-conferring locus to A. candida isolate AcB1 has been mapped to LG A6 of B. juncea line Tumida-a Chinese vegetable type mustard using an F1DH mapping population that has been developed from a Tumida × Varuna (susceptible Indian gene pool line) cross. A molecular map containing 8,303 genic and GBS markers was used to map the resistance trait to an interval of 63.0 cM-70.8 cM on LG A6. Genome assemblies of Tumida and Varuna were used to find the genes present within the flanking markers discerned by genetic mapping. The most likely candidate gene in the mapped interval is BjuA046215, a CC-NBS-LRR (CNL) type R gene that encodes a protein with all the specific subdomains of the proteins encoded by such genes. Alleles of BjuA046215 in Varuna and other lines of the Indian and the east European gene pools encode proteins that have truncated LRR domains. Analysis of the syntenic regions in some of the Brassicaceae genomes and phylogenetic analysis of CNL type R genes showed BjuA046215 to be closely related to a recently described white rust resistance-conferring R gene BjuWRR1 in B. juncea Donskaja-IV, both belonging to the CNL-D group of R genes. Related R genes in Arabidopsis thaliana confer resistance to another oomycete, Peronospora parasitica.

5.
Mol Plant Pathol ; 19(7): 1719-1732, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29271603

RESUMO

Quantitative disease resistance (QDR) is the predominant form of resistance against necrotrophic pathogens. The genes and mechanisms underlying QDR are not well known. In the current study, the Arabidopsis-Alternaria brassicae pathosystem was used to uncover the genetic architecture underlying resistance to A. brassicae in a set of geographically diverse Arabidopsis accessions. Arabidopsis accessions revealed a rich variation in the host responses to the pathogen, varying from complete resistance to high susceptibility. Genome-wide association (GWA) mapping revealed multiple regions to be associated with disease resistance. A subset of genes prioritized on the basis of gene annotations and evidence of transcriptional regulation in other biotic stresses was analysed using a reverse genetics approach employing T-DNA insertion mutants. The mutants of three genes, namely At1g06990 (GDSL-motif lipase), At3g25180 (CYP82G1) and At5g37500 (GORK), displayed an enhanced susceptibility relative to the wild-type. These genes are involved in the development of morphological phenotypes (stomatal aperture) and secondary metabolite synthesis, thus defining some of the diverse facets of quantitative resistance against A. brassicae.


Assuntos
Alternaria/patogenicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
6.
Theor Appl Genet ; 122(6): 1091-103, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21188349

RESUMO

Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as 'weak' contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was "masked" due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.


Assuntos
Ácidos Erúcicos/química , Mostardeira/química , Mostardeira/genética , Óleos de Plantas/química , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Ligação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA