Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(12): 247, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975911

RESUMO

Wheat, an important cereal crop globally, faces major challenges due to increasing global population and changing climates. The production and productivity are challenged by several biotic and abiotic stresses. There is also a pressing demand to enhance grain yield and quality/nutrition to ensure global food and nutritional security. To address these multifaceted concerns, researchers have conducted numerous meta-QTL (MQTL) studies in wheat, resulting in the identification of candidate genes that govern these complex quantitative traits. MQTL analysis has successfully unraveled the complex genetic architecture of polygenic quantitative traits in wheat. Candidate genes associated with stress adaptation have been pinpointed for abiotic and biotic traits, facilitating targeted breeding efforts to enhance stress tolerance. Furthermore, high-confidence candidate genes (CGs) and flanking markers to MQTLs will help in marker-assisted breeding programs aimed at enhancing stress tolerance, yield, quality and nutrition. Functional analysis of these CGs can enhance our understanding of intricate trait-related genetics. The discovery of orthologous MQTLs shared between wheat and other crops sheds light on common evolutionary pathways governing these traits. Breeders can leverage the most promising MQTLs and CGs associated with multiple traits to develop superior next-generation wheat cultivars with improved trait performance. This review provides a comprehensive overview of MQTL analysis in wheat, highlighting progress, challenges, validation methods and future opportunities in wheat genetics and breeding, contributing to global food security and sustainable agriculture.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Fenótipo , Produtos Agrícolas/genética , Grão Comestível/genética
2.
Plant Dis ; 107(6): 1847-1860, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37311158

RESUMO

Stem rust is one of the major diseases threatening wheat production globally. To identify novel resistance quantitative trait loci (QTLs), we performed 35K Axiom Array SNP genotyping assays on an association mapping panel of 400 germplasm accessions, including Indian landraces, in conjunction with phenotyping for stem rust at seedling and adult plant stages. Association analyses using three genome wide association study (GWAS) models (CMLM, MLMM, and FarmCPU) revealed 20 reliable QTLs for seedling and adult plant resistance. Among these 20 QTLs, five QTLs were found consistent with three models, i.e., four QTLs on chromosome 2AL, 2BL, 2DL, and 3BL for seedling resistance and one QTL on chromosome 7DS for adult plant resistance. Further, we identified a total of 21 potential candidate genes underlying QTLs using gene ontology analysis, including a leucine rich repeat receptor (LRR) and P-loop nucleoside triphosphate hydrolase, which have a role in pathogen recognition and disease resistance. Furthermore, four QTLs (Qsr.nbpgr-3B_11, QSr.nbpgr-6AS_11, QSr.nbpgr-2AL_117-6, and QSr.nbpgr-7BS_APR) were validated through KASP located on chromosomes 3B, 6A, 2A, and 7B. Out of these QTLs, QSr.nbpgr-7BS_APR was identified as a novel QTL for stem rust resistance which has been found effective in both seedling as well as the adult plant stages. Identified novel genomic regions and validated QTLs have the potential to be deployed in wheat improvement programs to develop disease resistant varieties for stem rust and can diversify the genetic basis of resistance.


Assuntos
Basidiomycota , Plântula , Mapeamento Cromossômico , Plântula/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Basidiomycota/genética , Resistência à Doença/genética , Doenças das Plantas/genética
3.
Funct Integr Genomics ; 23(2): 169, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209309

RESUMO

Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Melhoramento Vegetal , Basidiomycota/genética , Genótipo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Resistência à Doença/genética
4.
BMC Plant Biol ; 22(1): 618, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36577935

RESUMO

BACKGROUND: During the last few decades, the diverse sources of resistance, several genes and QTLs for spot blotch resistance have been identified. However, a large set of germplasm lines are still unexplored that have the potential to develop highly resistant wheat cultivars for the target environments. Therefore, the identification of new sources of resistance to spot blotch is essential for breeding programmes to develop spot blotch resistant cultivars and sustain wheat production. The association mapping panel of 294 diverse bread wheat accessions was used to explore new sources of spot blotch disease resistance and to identify genomic regions using genome wide association analysis (GWAS). The genotypes were tested in replicated trials for spot blotch disease at three major hot spots in India (Varanasi in UP, Pusa in Bihar, and Cooch Behar in West Bengal). The area under the disease progress curve (AUDPC) was calculated to assess the level of resistance in each genotype. RESULTS: A total of 19 highly and 76 moderately resistant lines were identified. Three accessions (EC664204, IC534306 and IC535188) were nearly immune to spot blotch disease. The genotyping of all accessions resulted in a total of 16,787 high-quality polymorphic SNPs. The GWAS was performed using a Compressed Mixed Linear Model (CMLM) and a Mixed Linear Model (MLM). A total of seven significant MTAs, common in both the models and consistent across the environment, were further validated to develop KASP markers. Four MTAs (AX-94710084, AX-94865722, AX-95135556, and AX-94529408) on three chromosomes (2AL, 2BL, and 3BL) have been successfully validated through the KASP marker. CONCLUSIONS: The new source of resistance was identified from unexplored germplasm lines. The genomic regions identified through GWAS were validated through KASP markers. The marker information and the highly resistant sources are valuable resources to rapidly develop immune or near immune wheat varieties.


Assuntos
Ascomicetos , Resistência à Doença , Resistência à Doença/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Alelos , Ascomicetos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Doenças das Plantas/genética
5.
Heredity (Edinb) ; 128(6): 434-449, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418669

RESUMO

Leaf rust is one of the important diseases limiting global wheat production and productivity. To identify quantitative trait nucleotides (QTNs) or genomic regions associated with seedling and adult plant leaf rust resistance, multilocus genome-wide association studies (ML-GWAS) were performed on a panel of 400 diverse wheat genotypes using 35 K single-nucleotide polymorphism (SNP) genotyping assays and trait data of leaf rust resistance. Association analyses using six multi-locus GWAS models revealed a set of 201 significantly associated QTNs for seedling and 65 QTNs for adult plant resistance (APR), explaining 1.98-31.72% of the phenotypic variation for leaf rust. Among these QTNs, 51 reliable QTNs for seedling and 15 QTNs for APR were consistently detected in at least two GWAS models and were considered reliable QTNs. Three genomic regions were pleiotropic, each controlling two to three pathotype-specific seedling resistances to leaf rust. We also identified candidate genes, such as leucine-rich repeat receptor-like (LRR) protein kinases, P-loop containing nucleoside triphosphate hydrolase and serine-threonine/tyrosine-protein kinases (STPK), which have a role in pathogen recognition and disease resistance linked to the significantly associated genomic regions. The QTNs identified in this study can prove useful in wheat molecular breeding programs aimed at enhancing resistance to leaf rust and developing next-generation leaf rust-resistant varieties.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Pão , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Doenças das Plantas/genética , Proteínas Quinases , Plântula/genética , Triticum/genética
6.
Front Genet ; 13: 832153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222548

RESUMO

Since the inception of the theory and conceptual framework of genomic selection (GS), extensive research has been done on evaluating its efficiency for utilization in crop improvement. Though, the marker-assisted selection has proven its potential for improvement of qualitative traits controlled by one to few genes with large effects. Its role in improving quantitative traits controlled by several genes with small effects is limited. In this regard, GS that utilizes genomic-estimated breeding values of individuals obtained from genome-wide markers to choose candidates for the next breeding cycle is a powerful approach to improve quantitative traits. In the last two decades, GS has been widely adopted in animal breeding programs globally because of its potential to improve selection accuracy, minimize phenotyping, reduce cycle time, and increase genetic gains. In addition, given the promising initial evaluation outcomes of GS for the improvement of yield, biotic and abiotic stress tolerance, and quality in cereal crops like wheat, maize, and rice, prospects of integrating it in breeding crops are also being explored. Improved statistical models that leverage the genomic information to increase the prediction accuracies are critical for the effectiveness of GS-enabled breeding programs. Study on genetic architecture under drought and heat stress helps in developing production markers that can significantly accelerate the development of stress-resilient crop varieties through GS. This review focuses on the transition from traditional selection methods to GS, underlying statistical methods and tools used for this purpose, current status of GS studies in crop plants, and perspectives for its successful implementation in the development of climate-resilient crops.

7.
Comput Biol Med ; 141: 105052, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34836625

RESUMO

BACKGROUND: Aloe vera extract and its bioactive compounds possess anti-proliferative properties against cancer cells. However, no detailed molecular mechanism of action studies has been reported. We have now employed a computational approach to scrutinize the molecular mechanism of lead bioactive compounds from Aloe vera that potentially inhibit DNA synthesis. METHODS: Initially, the anti-proliferative activity of Aloe vera extract was examined in human breast cancer cells (in vitro/in vivo). Later on, computational screening of bioactive compounds from Aloe vera targeting DNA was performed by molecular docking and molecular dynamics simulation. RESULTS: In-vitro and in-vivo studies confirm that Aloe vera extract effectively suppresses the growth of breast cancer cells without significant cytotoxicity towards non-cancerous normal immortal cells. Computational screening predicts that growth suppression may be due to the presence of DNA intercalating bioactive compounds (riboflavin, daidzin, aloin, etc.) contained in Aloe vera. MM/PBSA calculation showed that riboflavin has a higher binding affinity at the DNA binding sites compared to standard drug daunorubicin. CONCLUSIONS: These observations support the hypothesis that riboflavin may be exploited as an anti-proliferative DNA intercalating agent to prevent cancer and is worthy of testing for the management of cancer by performing more extensive pre-clinical and if validated clinical trials.


Assuntos
Aloe , Neoplasias , Aloe/química , DNA , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
8.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281242

RESUMO

Cultivars with efficient root systems play a major role in enhancing resource use efficiency, particularly water absorption, and thus in drought tolerance. In this study, a diverse wheat association panel of 136 wheat accessions including mini core subset was genotyped using Axiom 35k Breeders' Array to identify genomic regions associated with seedling stage root architecture and shoot traits using multi-locus genome-wide association studies (ML-GWAS). The association panel revealed a wide variation of 1.5- to 50-fold and were grouped into six clusters based on 15 traits. Six different ML-GWAS models revealed 456 significant quantitative trait nucleotides (QTNs) for various traits with phenotypic variance in the range of 0.12-38.60%. Of these, 87 QTNs were repeatedly detected by two or more models and were considered reliable genomic regions for the respective traits. Among these QTNs, eleven were associated with average diameter and nine each for second order lateral root number (SOLRN), root volume (RV) and root length density (RLD). A total of eleven genomic regions were pleiotropic and each controlled two or three traits. Some important candidate genes such as Formin homology 1, Ubiquitin-like domain superfamily and ATP-dependent 6-phosphofructokinase were identified from the associated genomic regions. The genomic regions/genes identified in this study could potentially be targeted for improving root traits and drought tolerance in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Osmorregulação/genética , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Triticum/genética , Secas , Variação Genética , Poliploidia , Plântula/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
9.
Front Genet ; 11: 572975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329711

RESUMO

Resistance in modern wheat cultivars for stripe rust is not long lasting due to the narrow genetic base and periodical evolution of new pathogenic races. Though nearly 83 Yr genes conferring resistance to stripe rust have been cataloged so far, few of them have been mapped and utilized in breeding programs. Characterization of wheat germplasm for novel sources of resistance and their incorporation into elite cultivars is required to achieve durable resistance and thus to minimize the yield losses. Here, a genome-wide association study (GWAS) was performed on a set of 391 germplasm lines with the aim to identify quantitative trait loci (QTL) using 35K Axiom® array. Phenotypic evaluation disease severity against four stripe rust pathotypes, i.e., 46S119, 110S119, 238S119, and 47S103 (T) at the seedling stage in a greenhouse providing optimal conditions was carried out consecutively for 2 years (2018 and 2019 winter season). We identified, a total of 17 promising QTl which passed FDR criteria. Moreover these 17 QTL identified in the current study were mapped at different genomic locations i.e. 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5B and 6B. These 17 QTLs identified in the present study might play a key role in marker-assisted breeding for developing stripe rust resistant wheat cultivars.

10.
Front Plant Sci ; 11: 549743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042178

RESUMO

Poor understanding of the genetic and molecular basis of heat tolerance component traits is a major bottleneck in designing heat tolerant wheat cultivars. The impact of terminal heat stress is generally reported in the case of late sown wheat. In this study, our aim was to identify genomic regions for various agronomic traits under late sown conditions by using genome-wide association approach. An association mapping panel of 205 wheat accessions was evaluated under late sown conditions at three different locations in India. Genotyping of the association panel revealed 15,886 SNPs, out of which 11,911 SNPs with exact physical locations on the wheat reference genome were used in association analysis. A total of 69 QTLs (10 significantly associated and 59 suggestive) were identified for ten different traits including productive tiller number (17), grain yield (14), plant height (12), grain filling rate (6), grain filling duration (5), days to physiological maturity (4), grain number (3), thousand grain weight (3), harvest index (3), and biomass (2). Out of these associated QTLs, 17 were novel for traits, namely PTL (3), GY (2), GFR (6), HI (3) and GNM (3). Moreover, five consistent QTLs across environments were identified for GY (4) and TGW (1). Also, 11 multi-trait SNPs and three hot spot regions on Chr1Ds, Chr2BS, Chr2DS harboring many QTLs for many traits were identified. In addition, identification of heat tolerant germplasm lines based on favorable alleles HD2888, IC611071, IC611273, IC75240, IC321906, IC416188, and J31-170 would facilitate their targeted introgression into popular wheat cultivars. The significantly associated QTLs identified in the present study can be further validated to identify robust markers for utilization in marker-assisted selection (MAS) for development of heat tolerant wheat cultivars.

11.
Int J Biochem Cell Biol ; 53: 320-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907396

RESUMO

Ecotropic viral integration site 1 was originally identified as a retroviral integration site in murine leukemias. Several studies have established ecotropic viral integration site 1 as both a transcription factor and an interacting partner that presumably regulates gene expression. Using coimmunoprecipitation and fluorescence resonance energy transfer analysis, we found that the N-terminal domain of hypermethylated in cancer 1 interacts with the proximal set of zinc fingers of ecotropic viral integration site 1. This interaction not only abolishes the DNA binding activity of ecotropic viral integration site 1 but also disrupts the transcriptional activity of an anti-apoptotic gene promoter selectively targeted by ecotropic viral integration site 1. By using flow cytometry and western blotting, here we show that hypermethylated in cancer 1 can deregulate ecotropic viral integration site 1-mediated blockage of apoptosis. We hypothesize that therapeutic upregulation of hypermethylated in cancer 1 may provide an important means of targeting ecotropic viral integration site 1-positive cancers.


Assuntos
Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Proteína bcl-X/metabolismo , Animais , Apoptose/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/química , Transferência Ressonante de Energia de Fluorescência , Células HCT116 , Humanos , Fatores de Transcrição Kruppel-Like/química , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Proto-Oncogene Mas , Proto-Oncogenes , Fatores de Transcrição/química , Transcrição Gênica , Proteína bcl-X/química
12.
J Infect Dis ; 210(7): 1133-44, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24737802

RESUMO

BACKGROUND: Apoptosis of several host cells induced by parasites/parasite products has been investigated in human filariasis to understand immune hyporesponsiveness. However, apoptosis of monocytes-one of the major antigen presenting cells in peripheral circulation, which are chronically exposed to filarial antigens in infected subjects-is yet to be understood. METHODS: Apoptosis of human monocytes with Brugia pahangi antigen (BpA) was demonstrated by scoring several apoptotic markers using flow cytometry. Ability of BpA and plasma of infected subjects to suppress lymphocyte proliferation was demonstrated by (3)H thymidine incorporation assay and carboxyfluorescein succinimidyl ester dilution assay. RESULTS: BpA induced significant apoptosis of normal human monocytes, primarily through Toll-like receptor 4 (TLR4), and suppressed phytohemagglutinin (PHA)-mediated proliferation of normal human T lymphocytes. However, monocytes of Wuchereria bancrofti-infected subjects were resistant to BpA-induced apoptosis. Plasma of infected subjects also mediated apoptosis of normal monocytes, presumably due to circulating filarial antigens, and resulted in inhibition of PHA-induced proliferation. CONCLUSION: Normal human monocytes were found to be qualitatively different from those of filariasis-infected subjects; whereas filarial antigens mediate apoptosis of normal human monocytes through TLR4, those of infected subjects were found to be resistant.


Assuntos
Antígenos de Helmintos/imunologia , Apoptose , Brugia pahangi/imunologia , Filariose/imunologia , Monócitos/imunologia , Receptor 4 Toll-Like/imunologia , Wuchereria bancrofti/imunologia , Animais , Antígenos de Helmintos/metabolismo , Proliferação de Células , Estudos de Coortes , Citometria de Fluxo , Humanos , Tolerância Imunológica , Monócitos/fisiologia , Linfócitos T/imunologia , Receptor 4 Toll-Like/metabolismo
13.
Arthritis Res Ther ; 16(1): R49, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24507879

RESUMO

INTRODUCTION: Low levels of vitamin D have been associated with several autoimmune disorders including multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus (SLE). The major source of vitamin D is sunlight but exposure of SLE patients to UV rays has been shown to exacerbate disease pathology. Studies in various populations have shown an association between low vitamin D levels and higher SLE disease activity. METHODS: We enrolled 129 patients who fulfilled American College of Rheumatology criteria in the study. There were 79 treatment-naïve cases and 50 patients who were under treatment for underlying SLE. There were 100 healthy subjects from similar geographical areas included as controls. Plasma 25-OH vitamin D3 and interferon (IFN)-α levels were quantified by enzyme-linked immunosorbent assay (ELISA). The gene expression level of IFN-α was determined by quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS: Plasma 25-OH vitamin D3 significantly correlated in an inverse manner with systemic lupus erythematosus disease activity index (SLEDAI) scores (P <0.0001, r = -0.42), anti-dsDNA (P <0.0001, r = -0.39), plasma IFN-α (P <0.0001, r = -0.43) and levels of IFN-α gene expression (P = 0.0009, r = -0.45). Further, plasma levels of IFN-α positively correlated with gene expression of IFN-α (P <0.0001, r = 0.84). Treatment-naïve SLE patients displayed significantly higher plasma levels of IFN-α compared to patients under treatment (P <0.001) and controls (P <0.001). CONCLUSIONS: These results suggest an important role of vitamin D in regulating disease activity in SLE patients and the need to supplement vitamin D in their treatment.


Assuntos
Interferon-alfa/biossíntese , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Vitamina D/sangue , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Índia , Interferon-alfa/sangue , Interferon-alfa/imunologia , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deficiência de Vitamina D/epidemiologia
15.
Biochim Biophys Acta ; 1833(10): 2357-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770046

RESUMO

Aberrant expression of the proto-oncogene EVI1 (ecotropic virus integration site1) has been implicated not only in myeloid or lymphoid malignancies but also in colon, ovarian and breast cancers. Despite its importance in oncogenesis, the regulatory factors and mechanisms that potentiate the function of EVI1 and its consequences are partially known. Here we demonstrated that EVI1 is post-translationally modified by SUMO1 at lysine residues 533, 698 and 874. Although both EVI1 and SUMO1 were found to co-localize in nuclear speckles, the sumoylation mutant of EVI1 failed to co-localize with SUMO1. Sumoylation abrogated the DNA binding efficiency of EVI1 and also affected EVI1 mediated transactivation. The SUMO ligase PIASy was found to play a bi-directional role on EVI1, PIASy enhanced EVI1 sumoylation and augmented sumoylated EVI1 mediated repression. PIASy was also found to interact with EVI1 and impaired EVI1 transcriptional activity independent of its ligase activity. Arsenic trioxide (ATO) known to act as an antileukemic agent for acute promyelocytic leukemia (APL) not only enhanced EVI1 sumoylation but also enhanced the co-localization of EVI1 and SUMO1 in nuclear bodies distinct from PML nuclear bodies. ATO treatment also affected the Bcl-xL protein expression in EVI1 positive cell line. Thus, the results showed that arsenic treatment enhanced EVI1 sumoylation, deregulated Bcl-xL, which eventually may induce apoptosis in EVI1 positive cancer cells. The study for the first time explores and reports sumoylation of EVI1, which plays an essential role in regulating its function.


Assuntos
Arsenicais/farmacologia , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/patologia , Óxidos/farmacologia , Proto-Oncogenes/genética , Proteína SUMO-1/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteína bcl-X/metabolismo , Antineoplásicos/farmacologia , Apoptose , Trióxido de Arsênio , Western Blotting , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Feminino , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Proteína do Locus do Complexo MDS1 e EVI1 , Mutagênese Sítio-Dirigida , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proto-Oncogene Mas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína SUMO-1/genética , Sumoilação , Fatores de Transcrição/metabolismo , Ativação Transcricional , Células Tumorais Cultivadas , Proteína bcl-X/genética
16.
PLoS One ; 6(9): e25370, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980434

RESUMO

EVI1 (Ecotropic Viral Integration site I), which was originally identified as a myeloid transforming gene by means of retroviral insertional mutagenesis in mouse leukemia, encodes a nuclear DNA binding zinc finger protein. The presence of zinc fingers that are able to bind to specific sequences of DNA suggests that EVI1 is a transcriptional regulator; however, except a few, target genes of EVI1 are poorly functionally identified thus far. In this study we provide evidence that EVI1 directly induces the expression of Bcl-xL through the first set of zinc finger and thereby inhibits apoptosis. ChIP analysis showed that EVI1 binds to the Bcl-xL promoter in HT-29 cells, a colon carcinoma cell line, which expresses EVI1. The observation is also supported by the fact that EVI1 siRNA treated HT-29 cells, shows a down regulation of Bcl-xL expression and that over expression of EVI1 results in the induction of the Bcl-xL reporter construct. A set of EVI1 positive chronic myeloid leukemia (CML) samples also showed higher Bcl-xL expression with respect to EVI1 negative samples. Interestingly, co-expression of EVI1 with wild type, but not with dominant-negative form of PCAF, abolishes the effect of EVI1 on Bcl-xL, indicating that acetylation of EVI1 abrogates its ability not only to bind Bcl-xL promoter but also alleviate Bcl-xL activity. Finally we have shown that EVI1 expression regulates apoptosis in HT-29 cells, which is abrogated when HT-29 cells are transfected with EVI1 siRNA or PCAF. The result for the first time shows a direct pathway by which EVI1 can protect cells from apoptosis and also demonstrates that the pathway can be reversed when EVI1 is acetylated.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas/genética , Proto-Oncogenes , Proteína bcl-X/genética , Acetilação , Animais , Sequência de Bases , Bovinos , Proteínas de Ligação a DNA/química , Cães , Regulação para Baixo/genética , Células HEK293 , Células HT29 , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Ligação Proteica , Proto-Oncogene Mas , Ratos , Transcrição Gênica/genética , Regulação para Cima/genética , Dedos de Zinco , Fatores de Transcrição de p300-CBP/metabolismo
17.
Biochim Biophys Acta ; 1809(4-6): 269-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21555002

RESUMO

EVI1 (Ecotropic Viral Integration site I), which was originally identified as a site of viral integration in murine myeloid tumors, encodes a complex protein required for embryogenesis. The gene is known to express inappropriately in many types of human myeloid leukemias and solid tumors. Forced expression of EVI1 in murine hematopoietic precursor cells lead to abnormal differentiation and increased proliferation. EVI1 encodes two sets of zinc finger domains due to which it behaves as a transcriptional factor. However, except a few, the targets of EVI1 are not well understood and hence also the mechanism by which it initiates oncogenesis is not very clear. In this report, we show that SIRT1, a histone deacetylase is a direct target of EVI1. In vivo chromatin immunoprecipitation assay revealed that EVI1 binds to the promoter region of SIRT1 approximately 1kb upstream of the transcription start site. The functionality of the site was deduced by luciferase assay which showed that EVI1 significantly increases the SIRT1 promoter activity. SIRT1 was also found to be up regulated in cell lines and in chronic myeloid leukemia patient samples where EVI1 was detected. Over expression of SIRT1 in cells shows that it interacts with EVI1 and this interaction lead to the deacetylation of the protein. Upon deacetylation the stability of EVI1 was found to be affected which was negatively regulated by nicotinamide (NAM). Our results thus identify an EVI1-SIRT1 axis in the regulation of EVI1 activity suggesting a possible role of SIRT1 in EVI1 positive neoplasms.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Células K562 , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proto-Oncogenes/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...