Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Immunol Methods ; 522: 113553, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37661047

RESUMO

Targeted immune agonist (TIA) comprising a TLR7 agonist conjugated to tumor-targeting antibodies have been shown to induce potent anti-tumor responses in various preclinical models. However, the clinical proof-of-concept of a TIA has been hampered by systemic dose-limiting immune-related toxicities, including rapid induction of anti-drug antibodies in patients. We have developed ELISPOT-based assay to measure activation of antibody-secreting cells (ASCs), intended to simulate the interaction between TIA and peripheral B cells as a tool to pre-clinically de-risk tumor target-independent peripheral B-cell activation by TIA. This method has proven to be robust and has fast turn-around time to evaluate the induction of spontaneous B-cell activation by TIA in a tumor target- and FcγR-independent manner. This novel ASC assay platform may serve as a preclinical tool to de-risk TIAs that can potentially induce immune-related adverse effects in the clinic.


Assuntos
Neoplasias , Receptor 7 Toll-Like , Humanos , Adjuvantes Imunológicos , Anticorpos , Ativação Linfocitária
2.
J Biol Chem ; 299(3): 102902, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642178

RESUMO

The programmed cell death protein-1 (PD-1) is highly expressed on the surface of antigen-specific exhausted T cells and, upon interaction with its ligand PD-L1, can result in inhibition of the immune response. Anti-PD-1 treatment has been shown to extend survival and result in durable responses in several cancers, yet only a subset of patients benefit from this therapy. Despite the implication of metabolic alteration following cancer immunotherapy, mechanistic associations between antitumor responses and metabolic changes remain unclear. Here, we used desorption electrospray ionization mass spectrometry imaging to examine the lipid profiles of tumor tissue from three syngeneic murine models with varying treatment sensitivity at the baseline and at three time points post-anti-PD-1 therapy. These imaging experiments revealed specific alterations in the lipid profiles associated with the degree of response to treatment and allowed us to identify a significant increase of long-chain polyunsaturated lipids within responsive tumors following anti-PD-1 therapy. Immunofluorescence imaging of tumor tissues also demonstrated that the altered lipid profile associated with treatment response is localized to dense regions of tumor immune infiltrates. Overall, these results indicate that effective anti-PD-1 therapy modulates lipid metabolism in tumor immune infiltrates, and we thereby propose that further investigation of the related immune-metabolic pathways may be useful for better understanding success and failure of anti-PD-1 therapy.


Assuntos
Anticorpos Monoclonais , Antígeno B7-H1 , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Imunoterapia , Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos T/metabolismo , Microambiente Tumoral
3.
Acta Pharm Sin B ; 6(5): 384-392, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27709007

RESUMO

Isoniazid (INH) is highly effective for the management of tuberculosis. However, it can cause liver injury and even liver failure. INH metabolism has been thought to be associated with INH-induced liver injury. This review summarized the metabolic pathways of INH and discussed their associations with INH-induced liver injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...