Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 611(7934): 148-154, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36171287

RESUMO

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Proteínas de Membrana , Miofibroblastos , Neoplasias Pancreáticas , Células Estromais , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Antígeno B7-H1
2.
Nature ; 609(7925): 151-158, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978186

RESUMO

Compelling evidence shows that brown and beige adipose tissue are protective against metabolic diseases1,2. PR domain-containing 16 (PRDM16) is a dominant activator of the biogenesis of beige adipocytes by forming a complex with transcriptional and epigenetic factors and is therefore an attractive target for improving metabolic health3-8. However, a lack of knowledge surrounding the regulation of PRDM16 protein expression hampered us from selectively targeting this transcriptional pathway. Here we identify CUL2-APPBP2 as the ubiquitin E3 ligase that determines PRDM16 protein stability by catalysing its polyubiquitination. Inhibition of CUL2-APPBP2 sufficiently extended the half-life of PRDM16 protein and promoted beige adipocyte biogenesis. By contrast, elevated CUL2-APPBP2 expression was found in aged adipose tissues and repressed adipocyte thermogenesis by degrading PRDM16 protein. Importantly, extended PRDM16 protein stability by adipocyte-specific deletion of CUL2-APPBP2 counteracted diet-induced obesity, glucose intolerance, insulin resistance and dyslipidaemia in mice. These results offer a cell-autonomous route to selectively activate the PRDM16 pathway in adipose tissues.


Assuntos
Tecido Adiposo Bege , Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Camundongos , Adipócitos Bege/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteínas Culina , Proteínas de Ligação a DNA/metabolismo , Dislipidemias , Intolerância à Glucose , Resistência à Insulina , Obesidade , Estabilidade Proteica , Termogênese/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitinação
3.
Cancer Cell ; 40(6): 656-673.e7, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35523176

RESUMO

Recent studies have identified a unique cancer-associated fibroblast (CAF) population termed antigen-presenting CAFs (apCAFs), characterized by the expression of major histocompatibility complex class II molecules, suggesting a function in regulating tumor immunity. Here, by integrating multiple single-cell RNA-sequencing studies and performing robust lineage-tracing assays, we find that apCAFs are derived from mesothelial cells. During pancreatic cancer progression, mesothelial cells form apCAFs by downregulating mesothelial features and gaining fibroblastic features, a process induced by interleukin-1 and transforming growth factor ß. apCAFs directly ligate and induce naive CD4+ T cells into regulatory T cells (Tregs) in an antigen-specific manner. Moreover, treatment with an antibody targeting the mesothelial cell marker mesothelin can effectively inhibit mesothelial cell to apCAF transition and Treg formation induced by apCAFs. Taken together, our study elucidates how mesothelial cells may contribute to immune evasion in pancreatic cancer and provides insight on strategies to enhance cancer immune therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos , Humanos , Neoplasias Pancreáticas/patologia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Pancreáticas
4.
Immunol Rev ; 302(1): 299-320, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34164824

RESUMO

Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Biomarcadores , Fibroblastos , Humanos , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral
5.
Nature ; 593(7860): 575-579, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981032

RESUMO

Fibroblasts are non-haematopoietic structural cells that define the architecture of organs, support the homeostasis of tissue-resident cells and have key roles in fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described fibroblast heterogeneity within individual tissues1. However, the field lacks a characterization of fibroblasts at single-cell resolution across tissues in healthy and diseased organs. Here we constructed fibroblast atlases by integrating single-cell transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in mouse identified two universal fibroblast transcriptional subtypes across tissues. Our analysis suggests that these cells can serve as a reservoir that can yield specialized fibroblasts across a broad range of steady-state tissues and activated fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed states showed that fibroblast transcriptional states are conserved between mice and humans, including universal fibroblasts and activated phenotypes associated with pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a cross-species and pan-tissue approach to transcriptomics at single-cell resolution has identified key organizing principles of the fibroblast lineage in health and disease.


Assuntos
Fibroblastos/citologia , Transcriptoma , Animais , Células Cultivadas , Doença , Feminino , Fibroblastos/classificação , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias , Especificidade de Órgãos , Fenótipo , RNA-Seq , Análise de Célula Única , Células Estromais
6.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615086

RESUMO

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Assuntos
Adipogenia/genética , Tecido Adiposo Bege/metabolismo , Metabolismo Energético/genética , Quinase 1 de Adesão Focal/metabolismo , Transdução de Sinais/genética , Células-Tronco/metabolismo , Tetraspanina 28/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Ataxina-1/metabolismo , Feminino , Fibronectinas/farmacologia , Quinase 1 de Adesão Focal/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Células-Tronco/citologia , Tetraspanina 28/genética
7.
EMBO Rep ; 21(9): e49828, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32672883

RESUMO

While brown adipose tissue (BAT) is well-recognized for its ability to dissipate energy in the form of heat, recent studies suggest multifaced roles of BAT in the regulation of glucose and lipid homeostasis beyond stimulating thermogenesis. One of the functions involves interorgan communication with metabolic organs, such as the liver, through BAT-derived secretory factors, a.k.a., batokine. However, the identity and the roles of such mediators remain insufficiently understood. Here, we employed proteomics and transcriptomics in human thermogenic adipocytes and identified previously unappreciated batokines, including phospholipid transfer protein (PLTP). We found that increased circulating levels of PLTP, via systemic or BAT-specific overexpression, significantly improve glucose tolerance and insulin sensitivity, increased energy expenditure, and decrease the circulating levels of cholesterol, phospholipids, and sphingolipids. Such changes were accompanied by increased bile acids in the circulation, which in turn enhances glucose uptake and thermogenesis in BAT. Our data suggest that PLTP is a batokine that contributes to the regulation of systemic glucose and lipid homeostasis as a mediator of BAT-liver interorgan communication.


Assuntos
Tecido Adiposo Marrom , Glucose , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Glucose/metabolismo , Homeostase , Humanos , Lipídeos , Fígado , Termogênese
8.
Nature ; 572(7771): 614-619, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435015

RESUMO

Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.


Assuntos
Tecido Adiposo Marrom/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo Energético , Homeostase , Proteínas Mitocondriais/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Animais , Temperatura Baixa , Intolerância à Glucose/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo
9.
Sci Rep ; 7: 42130, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181539

RESUMO

Brown adipocytes regulate energy expenditure via mitochondrial uncoupling, which makes them attractive therapeutic targets to tackle obesity. However, the regulatory mechanisms underlying brown adipogenesis are still poorly understood. To address this, we profiled the transcriptome and chromatin state during mouse brown fat cell differentiation, revealing extensive gene expression changes and chromatin remodeling, especially during the first day post-differentiation. To identify putatively causal regulators, we performed transcription factor binding site overrepresentation analyses in active chromatin regions and prioritized factors based on their expression correlation with the bona-fide brown adipogenic marker Ucp1 across multiple mouse and human datasets. Using loss-of-function assays, we evaluated both the phenotypic effect as well as the transcriptomic impact of several putative regulators on the differentiation process, uncovering ZFP467, HOXA4 and Nuclear Factor I A (NFIA) as novel transcriptional regulators. Of these, NFIA emerged as the regulator yielding the strongest molecular and cellular phenotypes. To examine its regulatory function, we profiled the genomic localization of NFIA, identifying it as a key early regulator of terminal brown fat cell differentiation.


Assuntos
Adipócitos Marrons/metabolismo , Metabolismo Energético/genética , Fatores de Transcrição NFI/genética , Proteína Desacopladora 1/genética , Adipogenia/genética , Animais , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Proteínas de Homeodomínio , Humanos , Camundongos , Fatores de Transcrição , Transcriptoma/genética
10.
PLoS One ; 8(7): e69132, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935937

RESUMO

Hedgehog is an evolutionarily conserved developmental pathway, widely implicated in controlling various cellular responses such as cellular proliferation and stem cell renewal in human and other organisms, through external stimuli. Aberrant activation of this pathway in human adult stem cell line may cause different types of cancers. Hence, targeting this pathway in cancer therapy has become indispensable, but the non availability of detailed molecular interactions, complex regulations by extra- and intra-cellular proteins and cross talks with other pathways pose a serious challenge to get a coherent understanding of this signaling pathway for making therapeutic strategy. This motivated us to perform a computational study of the pathway and to identify probable drug targets. In this work, from available databases and literature, we reconstructed a complete hedgehog pathway which reports the largest number of molecules and interactions to date. Using recently developed computational techniques, we further performed structural and logical analysis of this pathway. In structural analysis, the connectivity and centrality parameters were calculated to identify the important proteins from the network. To capture the regulations of the molecules, we developed a master Boolean model of all the interactions between the proteins and created different cancer scenarios, such as Glioma, Colon and Pancreatic. We performed perturbation analysis on these cancer conditions to identify the important and minimal combinations of proteins that can be used as drug targets. From our study we observed the under expressions of various oncoproteins in Hedgehog pathway while perturbing at a time the combinations of the proteins GLI1, GLI2 and SMO in Glioma; SMO, HFU, ULK3 and RAS in Colon cancer; SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer. This reconstructed Hedgehog signaling pathway and the computational analysis for identifying new combinatory drug targets will be useful for future in-vitro and in-vivo analysis to control different cancers.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Glioma/tratamento farmacológico , Proteínas Hedgehog/metabolismo , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Simulação por Computador , Glioma/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...