Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 78(3): 413-422, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069598

RESUMO

Most animal species have a singular developmental pathway and adult ecology, but developmental plasticity is well-known in some such as honeybees where castes display profoundly different morphology and ecology. An intriguing case is the Atlantic deep-sea hydrothermal vent shrimp pair Rimicaris hybisae and R. chacei that share dominant COI haplotypes and could represent very recently diverging lineages or even morphs of the same species. Rimicaris hybisae is symbiont-reliant with a hypertrophied head chamber (in the Mid-Cayman Spreading Centre), while R. chacei is mixotrophic with a narrow head chamber (on the Mid-Atlantic Ridge). Here, we use X-ray micro-computed tomography and fluorescence in situ hybridization to show that key anatomical shifts in both occur during the juvenile-subadult transition, when R. hybisae has fully established symbiosis but not R. chacei. On the Mid-Atlantic Ridge, the diet of R. chacei has been hypothetically linked to competition with the obligatorily symbiotic congener R. exoculata, and we find anatomical evidence that R. exoculata is indeed better adapted for symbiosis. We speculate the possibility that the distinct development trajectories in R. hybisae and R. chacei may be determined by symbiont colonization at a "critical period" before subadulthood, though further genetic studies are warranted to test this hypothesis along with the true relationship between R. hybisae and R. chacei.


Assuntos
Decápodes , Fontes Hidrotermais , Animais , Abelhas/genética , Simbiose , Hibridização in Situ Fluorescente , Microtomografia por Raio-X , Decápodes/genética , Decápodes/anatomia & histologia
2.
Environ Microbiol Rep ; 15(6): 614-630, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752716

RESUMO

Rimicaris exoculata shrimps from hydrothermal vent ecosystems are known to host dense epibiotic communities inside their enlarged heads and digestive systems. Conversely, other shrimps from the family, described as opportunistic feeders have received less attention. We examined the nutrition and bacterial communities colonising 'head' chambers and digestive systems of three other alvinocaridids-Rimicaris variabilis, Nautilocaris saintlaurentae and Manuscaris sp.-using a combination of electron microscopy, stable isotopes and sequencing approaches. Our observations inside 'head' cavities and on mouthparts showed only a really low coverage of bacterial epibionts. In addition, no clear correlation between isotopic ratios and relative abundance of epibionts on mouthparts could be established among shrimp individuals. Altogether, these results suggest that none of these alvinocaridids rely on chemosynthetic epibionts as their main source of nutrition. Our analyses also revealed a substantial presence of several Firmicutes and Deferribacterota lineages within the foreguts and midguts of these shrimps, which closest known lineages were systematically digestive symbionts associated with alvinocaridids, and more broadly for Firmicutes from digestive systems of other crustaceans from marine and terrestrial ecosystems. Overall, our study opens new perspectives not only about chemosynthetic symbioses of vent shrimps but more largely about digestive microbiomes with potential ancient and evolutionarily conserved bacterial partnerships among crustaceans.


Assuntos
Decápodes , Microbioma Gastrointestinal , Fontes Hidrotermais , Microbiota , Humanos , Animais , Filogenia , Decápodes/microbiologia , Dieta , Fontes Hidrotermais/microbiologia
3.
Ecol Evol ; 12(7): e9076, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866019

RESUMO

Variations in offspring production according to feeding strategies or food supply have been recognized in many animals from various ecosystems. Despite an unusual trophic structure based on non-photosynthetic primary production, these relationships remain largely under-studied in chemosynthetic ecosystems. Here, we use Rimicaris shrimps as a study case to explore relationships between reproduction, diets, and food supply in these environments. For that, we compared reproductive outputs of three congeneric shrimps differing by their diets. They inhabit vents located under oligotrophic waters of tropical gyres with opposed latitudes, allowing us to also examine the prevalence of phylogenetic vs environmental drivers in their reproductive rhythms. For this, we used both our original data and a compilation of published observations on the presence of ovigerous females covering various seasons over the past 35 years. We report distinct egg production trends between Rimicaris species relying solely on chemosymbiosis-R. exoculata and R. kairei-and one relying on mixotrophy, R. chacei. Besides, our data suggest a reproductive periodicity that does not correspond to seasonal variations in surface production, with substantial proportions of brooding females during the same months of the year, despite those months corresponding to either boreal winter or austral summer depending on the hemisphere. These observations contrast with the long-standing paradigm in deep-sea species for which periodic reproductive patterns have always been attributed to seasonal variations of photosynthetic production sinking from the surface. Our results suggest the presence of an intrinsic basis for biological rhythms in the deep sea, and bring to light the importance of having year-round observations in order to understand the life history of vent animals.

4.
Genes (Basel) ; 13(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741747

RESUMO

Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.


Assuntos
Fontes Hidrotermais , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Caramujos
5.
Sci Rep ; 11(1): 7856, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846371

RESUMO

Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. Here, we aimed to optimize the genetic assessment of prokaryote (16S), protistan (18S V4), and metazoan (18S V1-V2, COI) communities, by evaluating sampling strategies for sediment and aboveground water, deployed simultaneously at one deep-sea site. For sediment, while size-class sorting through sieving had no significant effect on total detected alpha diversity and resolved similar taxonomic compositions at the phylum level for all markers studied, it effectively increased the detection of meiofauna phyla. For water, large volumes obtained from an in situ pump (~ 6000 L) detected significantly more metazoan diversity than 7.5 L collected in sampling boxes. However, the pump being limited by larger mesh sizes (> 20 µm), only captured a fraction of microbial diversity, while sampling boxes allowed access to the pico- and nanoplankton. More importantly, communities characterized by aboveground water samples significantly differed from those characterized by sediment, whatever volume used, and both sample types only shared between 3 and 8% of molecular units. Together, these results underline that sediment sieving may be recommended when targeting metazoans, and aboveground water does not represent an alternative to sediment sampling for inventories of benthic diversity.


Assuntos
Biodiversidade , Biomarcadores/análise , DNA Ambiental/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Animais , Mar Mediterrâneo
6.
R Soc Open Sci ; 7(7): 200837, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874664

RESUMO

Among hydrothermal vent species, Rimicaris exoculata is one of the most emblematic, hosting abundant and diverse ectosymbioses that provide most of its nutrition. Rimicaris exoculata co-occurs in dense aggregates with the much less abundant Rimicaris chacei in many Mid-Atlantic Ridge vent fields. This second shrimp also houses ectosymbiotic microorganisms but has a mixotrophic diet. Recent observations have suggested potential misidentifications between these species at their juvenile stages, which could have led to misinterpretations of their early-life ecology. Here, we confirm erroneous identification of the earliest stages and propose a new set of morphological characters unambiguously identifying juveniles of each species. On the basis of this reassessment, combined use of C, N and S stable isotope ratios reveals distinct ontogenic trophic niche shifts in both species, from photosynthesis-based nutrition before settlement, towards a chemosynthetic diet afterwards. Furthermore, isotopic compositions in the earliest juvenile stages suggest differences in larval histories. Each species thus exhibits specific early-life strategies that would, without our re-examination, have been interpreted as ontogenetic variations. Overall, our results provide a good illustration of the identification issues persisting in deep-sea ecosystems and the importance of integrative taxonomy in providing an accurate view of fundamental aspects of the biology and ecology of species inhabiting these environments.

7.
Front Immunol ; 11: 1511, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765521

RESUMO

The symbiotic shrimp Rimicaris exoculata dominates the macrofauna inhabiting the active smokers of the deep-sea mid Atlantic ridge vent fields. We investigated the nature of the host mechanisms controlling the vital and highly specialized ectosymbiotic community confined into its cephalothoracic cavity. R. exoculata belongs to the Pleocyemata, crustacean brooding eggs, usually producing Type I crustins. Unexpectedly, a novel anti-Gram-positive type II crustin was molecularly identified in R. exoculata. Re-crustin is mainly produced by the appendages and the inner surfaces of the cephalothoracic cavity, embedding target epibionts. Symbiosis acquisition and regulating mechanisms are still poorly understood. Yet, symbiotic communities were identified at different steps of the life cycle such as brooding stage, juvenile recruitment and molt cycle, all of which may be crucial for symbiotic acquisition and control. Here, we show a spatio-temporal correlation between the production of Re-crustin and the main ectosymbiosis-related life-cycle events. Overall, our results highlight (i) a novel and unusual AMP sequence from an extremophile organism and (ii) the potential role of AMPs in the establishment of vital ectosymbiosis along the life cycle of deep-sea invertebrates.


Assuntos
Anostraca/fisiologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Proteínas de Artrópodes/metabolismo , Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Ecossistema , Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida , Oceanos e Mares , Proteínas Citotóxicas Formadoras de Poros/genética , Simbiose
8.
Front Zool ; 17: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391066

RESUMO

The chemosymbiotic gastropod Alviniconcha (Provannidae), first described in 1988, is one of the most emblematic hydrothermal-vent taxa described from the Central Indian Ridge and the Southwest (SW) Pacific. Symbiotic bacteria found in the gill of Alviniconcha are thought to be their principal source of nutrition. In the SW Pacific, species distributions for A. kojimai, A. boucheti - and to a lesser extent A. strummeri - overlap. While Alviniconcha species do not appear to truly co-exist in these highly energetic but spatially limited habitats, certain species regularly co-occur within a single vent field and in rare instances, the same edifice. Past research suggests that SW-Pacific Alviniconcha species might aggregate around fluids with distinct geothermal profiles. These small-scale distribution patterns have been attributed to differences in their symbiont assemblages or host physiologies. However, little is known about the anatomy of most Alviniconcha species, beyond that detailed for the type species Alviniconcha hessleri, whose geographic range does not overlap with other congeners. In fact, species within this genus are currently described as cryptic, despite the absence of any comparative morphological studies to assess this. To test whether the genus is genuinely cryptic and identify any functional differences in host anatomy that might also mediate habitat partitioning in SW Pacific species, the current study examined the morphoanatomy of A. kojimai, A. boucheti and A. strummeri from the Fatu Kapa vent field, an area of hydrothermal activity recently discovered north of the Lau Basin near the Wallis and Futuna Islands and the only known example where all three species occur within adjacent vent fields. A combination of detailed dissections, histology and X-ray computed tomography demonstrate that A. kojimai, A. strummeri and A. boucheti are readily identifiable based on shell morphology and ornamentation alone, and therefore not truly cryptic. These traits provide a rapid and reliable means for species identification. However, aside from some subtle differences in radular morphology, these species of Alviniconcha exhibit conserved anatomical features, providing no evidence that functional host anatomy is implicated in habitat partitioning. This provides support for the current belief that host-species distributions are probably governed by symbiont-mediated physiological factors.

9.
Front Microbiol ; 10: 808, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057515

RESUMO

Rimicaris exoculata is one of the most well-known and emblematic species of endemic vent fauna. Like many other species from these ecosystems, Rimicaris shrimps host important communities of chemosynthetic bacteria living in symbiosis with their host inside the cephalothorax and gut. For many of these symbiotic partners, the mode of transmission remains to be elucidated and the starting point of the symbiotic relationship is not yet defined, but could begin with the egg. In this study, we explored the proliferation of microbial communities on R. exoculata broods through embryonic development using a combination of NGS sequencing and microscopy approaches. Variations in abundance and diversity of egg microbial communities were analyzed in broods at different developmental stages and collected from mothers at two distinct vent fields on the Mid-Atlantic Ridge (TAG and Snake Pit). We also assessed the specificity of the egg microbiome by comparing communities developing on egg surfaces with those developing on the cuticle of pleopods, which are thought to be exposed to similar environmental conditions because the brood is held under the female's abdomen. In terms of abundance, bacterial colonization clearly increases with both egg developmental stage and the position of the egg within the brood: those closest to the exterior having a higher bacterial coverage. Bacterial biomass increase also accompanies an increase of mineral precipitations and thus clearly relates to the degree of exposure to vent fluids. In terms of diversity, most bacterial lineages were found in all samples and were also those found in the cephalothorax of adults. However, significant variation occurs in the relative abundance of these lineages, most of this variation being explained by body surface (egg vs. pleopod), vent field, and developmental stage. The occurrence of symbiont-related lineages of Epsilonbacteraeota, Gammaproteobacteria, Zetaproteobacteria, and Mollicutes provide a basis for discussion on both the acquisition of symbionts and the potential roles of these bacterial communities during egg development.

10.
PLoS One ; 13(11): e0206084, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30388125

RESUMO

Rimicaris chacei Williams and Rona 1986, formerly named as Chorocaris chacei, is a caridean shrimp living in deep-sea hydrothermal ecosystems. This shrimp is endemic to the Mid Atlantic Ridge (MAR) and lives at the periphery of aggregates of its well-known congeneric R. exoculata Williams and Rona 1986. Contrasting with the very dense and mobile clusters formed by R. exoculata, R. chacei lives in small groups of several individuals that are not very mobile. Although devoid of the characteristic hypertrophied cephalothorax of R. exoculata, which harbors the ectosymbionts, a microbial community has also been reported in the cephalothorax of R. chacei. Previous data on morphology, behavior and isotopic values indicate a diet based on a combination of feeding on its epibiotic bacteria and scavenging or occasional predation. In this study, our objective was to describe, for the first time, the distribution, morphology and phylogeny of the microbial communities associated with R. chacei. This species is significantly less studied than R. exoculata, but nevertheless represents the only other known example of symbiosis in crustaceans of MAR hydrothermal vent sites. Microbial communities have been observed at the same locations as in R. exoculata (mouthparts, branchiostegites and digestive tract). However, in R. chacei, the surfaces occupied by the bacteria are smaller. The main lineages are affiliated to Epsilon and Gammaproteobacteria in the cephalothorax and to Deferribacteres, Mollicutes, Epsilon and Gammaproteobacteria in the digestive tract. Comparison with the well-described bacterial communities of R. exoculata and hypotheses about the role of these communities in R. chacei are discussed.


Assuntos
Decápodes/microbiologia , Microbioma Gastrointestinal , Brânquias/microbiologia , Fontes Hidrotermais/microbiologia , Microbiota , Simbiose , Animais , Bactérias/citologia , Bactérias/crescimento & desenvolvimento , Bactérias/ultraestrutura , Sequência de Bases , Biodiversidade , Corantes Fluorescentes/metabolismo , Gammaproteobacteria/genética , Trato Gastrointestinal/ultraestrutura , Filogenia , RNA Ribossômico 16S/genética
11.
PLoS One ; 10(12): e0144657, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26710075

RESUMO

Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential combinations. However, the Alvinocarididae is the only taxa with a combination of lecithotrophy and extended larval development.


Assuntos
Decápodes/anatomia & histologia , Larva/anatomia & histologia , Biologia Marinha/métodos , Frutos do Mar , Animais , Decápodes/fisiologia , Ecossistema , Fontes Hidrotermais , Larva/fisiologia , Oceanos e Mares , Filogenia
12.
PLoS One ; 9(4): e95737, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24776651

RESUMO

The emblematic hydrothermal worm Alvinella pompejana is one of the most thermo tolerant animal known on Earth. It relies on a symbiotic association offering a unique opportunity to discover biochemical adaptations that allow animals to thrive in such a hostile habitat. Here, by studying the Pompeii worm, we report on the discovery of the first antibiotic peptide from a deep-sea organism, namely alvinellacin. After purification and peptide sequencing, both the gene and the peptide tertiary structures were elucidated. As epibionts are not cultivated so far and because of lethal decompression effects upon Alvinella sampling, we developed shipboard biological assays to demonstrate that in addition to act in the first line of defense against microbial invasion, alvinellacin shapes and controls the worm's epibiotic microflora. Our results provide insights into the nature of an abyssal antimicrobial peptide (AMP) and into the manner in which an extremophile eukaryote uses it to interact with the particular microbial community of the hydrothermal vent ecosystem. Unlike earlier studies done on hydrothermal vents that all focused on the microbial side of the symbiosis, our work gives a view of this interaction from the host side.


Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fontes Hidrotermais , Poliquetos/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Ecossistema , Evolução Molecular , Fontes Hidrotermais/microbiologia , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
13.
Mar Environ Res ; 77: 129-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22503949

RESUMO

To highlight the spatio-temporal variability of the food web structure of hydrothermal vent fauna from newly-opened habitat, a series of Titanium Ring for Alvinellid Colonization devices (TRACs) was deployed at TICA site on the East Pacific Rise in 2006. This experiment was conducted for periods of 4 days, 13 days and one month and deployments were aligned along a gradient from the basaltic bottom to the vent openings. δ(13)C values of colonists revealed a narrower range of carbon sources in proximity to vent openings in Alvinella pompejana habitat than in Tevnia jerichonana habitat, separated by a distance of four meters. This was possibly due to a spatial change in available food sources with a possible higher contribution of particulate organic matter (POM) to the siboglinid habitat compared to a higher contribution of microbial primary producers such as Epsilonproteobacteria in the alvinellid habitat. Temporal variability was also observed during experimentation in the form of a shift in either δ(13)C and/or δ(15)N values for A. pompejana, Lepetodrilus elevatus, dirivultid copepods and polynoid polychaetes within a one-month window showing first of all, fast tissues turnover and secondly, a possible switch in feeding strategy or food sources. Lepidonotopodium riftense and Branchinotogluma sandersi may have to alternate between detritivorous and predatory feeding strategies. In addition, through the analysis of stable isotope composition of A. pompejana and its episymbionts, we provided evidence that these attached bacteria formed part of the worms' diet during the course of these colonization experiments.


Assuntos
Demografia , Ecossistema , Cadeia Alimentar , Fontes Hidrotermais , Poliquetos/crescimento & desenvolvimento , Análise de Variância , Animais , Isótopos de Carbono/análise , Epsilonproteobacteria/crescimento & desenvolvimento , Isótopos de Nitrogênio/análise , Oceano Pacífico , Poliquetos/química , Especificidade da Espécie , Fatores de Tempo
14.
J Theor Biol ; 255(3): 320-31, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18834891

RESUMO

Deep-sea hydrothermal vent animal communities along oceanic ridges are both patchy and transient. Larval dispersal is a key factor in understanding how these communities function and are maintained over generations. To date, numerical approaches simulating larval dispersal considered the effect of oceanic currents on larval transportation over hundreds of kilometers but very seldom looked at the effect of local conditions within meters around chimneys. However, small scale significant variations in the hydrodynamics may influence larval fate in its early stages after release, and hence have a knock-on effect on both dispersal and colonization processes. Here we present a new numerical approach to the study of larval dispersal, considering small scales within the range of the biological communities, called "bio-hydrodynamical" scale, and ranging from a few centimeters to a few meters around hydrothermal sources. We use a physical model for the vent based on jet theory and compute the turbulent velocity field around the smoker. Larvae are considered as passive particles whose trajectories are affected by hydrodynamics, topography of the vent chimney and larval biological properties. Our model predicts that bottom currents often dominate all other factors either by entraining all larvae away from the vent or enforcing strong colonization rates. When bottom currents are very slow (<1 mms(-1)), general larvae motion is upwards due to entrainment by the main smoker jet. In this context, smokers with vertical slopes favor retention of larvae because larval initial trajectory is nearly parallel to the smoker wall, which increases the chances to settle. This retention phenomenon is intensified with increasing velocity of the main smoker jet because entrainment in the high velocity plume is preceded by a phase when larvae are attracted towards the smoker wall, which occurs earlier with higher velocity of the main jet. Finally, the buoyancy rate of the larvae, measured to be in the range of 0.01 mms(-1), is generally irrelevant unless hydrodynamic conditions are balanced, i.e. if the buoyancy rate is comparable to both the bottom current speed and the local water velocity due to entrainment by close smokers. Overall, our model evidences the strong effect of the release point of larvae on their future entrainment within local fluxes. Larvae released from smoker walls might have an entirely different fate than those released further away in the water column. The latter are not, or less, affected by near-chimney hydrodynamics.


Assuntos
Simulação por Computador , Ecossistema , Biologia Marinha , Modelos Teóricos , Animais , Larva , Oceanos e Mares , Movimentos da Água
15.
J Exp Biol ; 208(Pt 8): 1551-61, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15802678

RESUMO

Dispersal and colonisation processes at deep-sea vents are still not fully understood, essentially because early life stages of vent species remain unknown. The polychaete worm Alvinella pompejana forms colonies on chimney walls at East Pacific Rise vent sites where the temperature can frequently exceed 20 degrees C. In vitro studies in pressure vessels showed that the early embryos tolerate temperatures in a lower range (10-14 degrees C), suggesting that they would have to escape the colony to develop. Pressure vessels offer the advantage that each parameter can be independently controlled, but they do not simulate the more complex and dynamic conditions naturally encountered at vent sites. Accordingly, in addition to incubations in pressure vessels, we incubated embryos directly at a vent site, in different habitats along a gradient of hydrothermal influence. Embryos incubated on an adult A. pompejana colony where temperature and H(2)S concentrations were relatively high showed a very low survival rate and did not develop, whereas embryos incubated in a Riftia pachyptila clump environment with a lower hydrothermal signature, or at the base of the chimney where the influence of the hydrothermal activity was very weak, survived well and developed. Although the average temperature recorded in the A. pompejana colony was within the range tolerated by embryos (13 degrees C), frequent peaks above 20 degrees C were recorded. Estimated sulphide concentration at this site reached 200 mumol l(-1). Punctuated exposure to both high temperature and elevated sulphide levels probably explain the low survival of embryos within the A. pompejana colony. The in situ experiments further support the idea that embryos require conditions with moderate hydrothermal influence not generally found within an adult colony. However, as much more benign physicochemical conditions can be found within a few tens of cm of adult colonies, embryos do not necessarily have to leave their vent of origin to develop. Further analyses are needed to pinpoint the specific factors that affect the survival and development of embryos at vents.


Assuntos
Embrião não Mamífero/embriologia , Meio Ambiente , Poliquetos/embriologia , Animais , Fertilização in vitro , Sulfeto de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Oceano Pacífico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...