Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(8): e0220151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31412055

RESUMO

The Gran Chaco is a wide ecologic-geographic region comprising northern Argentina, western Paraguay, southern Bolivia and the southwestern extreme of Brazil. This region exhibits extreme temperatures, annually regular frosts, and sedimentary soils; it has been dramatically threatened by agriculture expansion in recent decades. Therefore, increasing knowledge of plant diversity is critical for conservation purposes. We present a Legume checklist of the Gran Chaco ecoregion including conservation status of its endemic species. Leguminosae is the third most diverse plant family in the Neotropics. Assuming a rigorous spatial definition of the Gran Chaco, we recorded 98 genera, 362 species, and 404 specific and infraspecific taxa. Endemic/typical taxa were 17%, comparable to adjacent tropical plant formations, and they were found in higher percentages in Caesalpinioideae (24%) and Cercidoideae (33%) than Papilionoideae (11%) subfamily. We also analyzed the plant diversity comparing lineages and subregions. The Gran Chaco Legumes are predominantly widespread generalists, or they belong to either Chaco sensu stricto or Neotropical Seasonally Dry Tropical Forest (SDTF) lineages. Though the Humid Chaco registered the highest species richness, Dry Chaco and Sierra Chaco, the most threatrened subregions, exhibited the highest percentages of exclusive and proper Chaco-lineage species. These results suggest that diversification of Legumes has been most relevant in Dry Chaco and Sierra Chaco, probably by their more demanding and harsh environmental conditions limiting the dispersion of generalists or intrusive-invading species. This study is paramount to reach an improved delimitation of the Gran Chaco ecoregion in transitional areas with the SDTF and Cerrado formations. Conservation status is critical in genera of high economic interest, such as Arachis, Mimosa and Prosopis. At least one third of endemic taxa exhibit a critical status of conservation or are endangered, many of them being relevant to inbreeding program or exhibiting multiple economic uses.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Fabaceae/classificação , Argentina , Fabaceae/crescimento & desenvolvimento , Florestas , Geografia
4.
Science ; 353(6306): 1383-1387, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27708031

RESUMO

Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Florestas , Árvores , Região do Caribe , Tomada de Decisões , Pradaria , América Latina , Estações do Ano , Clima Tropical , Madeira
5.
Springerplus ; 5: 477, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27217992

RESUMO

The Anacardiaceae is an important and worldwide distributed family of ecological and socio-economic relevance. Notwithstanding that, molecular studies in this family are scarce and problematic because of the particularly high concentration of secondary metabolites-i.e. tannins and oleoresins-that are present in almost all tissues of the many members of the group, which complicate the purification and amplification of the DNA. The objective of this work was to improve an available DNA isolation method for Schinopsis spp. and other related Anacardiaceae, as well as the PCR protocols for DNA amplification of the chloroplast trnL-F, rps16 and ndhF and nuclear ITS-ETS fragments. The modifications proposed allowed the extraction of 70-120 µg of non-degraded genomic DNA per gram of dry tissue that resulted useful for PCR amplification. PCR reactions produced the expected fragments that could be directly sequenced. Sequence analyses of amplicons showed similarity with the corresponding Schinopsis accessions available at GenBank. The methodology presented here can be routinely applied for molecular studies of the group aimed to clarify not only aspects on the molecular biology but also the taxonomy and phylogeny of this fascinating group of vascular plants.

6.
BMC Ecol ; 11: 27, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22115315

RESUMO

BACKGROUND: South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. RESULTS: Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. CONCLUSIONS: Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be particularly useful for mapping poorly known, fragmented, or degraded vegetation. We wish to highlight that biome delimitation is not an exact science, and that transparency is needed on how biomes are used as study units in macroevolutionary and ecological research.


Assuntos
Clima , Mapas como Assunto , Árvores , Estações do Ano , América do Sul
7.
Philos Trans R Soc Lond B Biol Sci ; 359(1443): 515-37, 2004 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-15212100

RESUMO

Historical climate changes have had a major effect on the distribution and evolution of plant species in the neotropics. What is more controversial is whether relatively recent Pleistocene climatic changes have driven speciation, or whether neotropical species diversity is more ancient. This question is addressed using evolutionary rate analysis of sequence data of nuclear ribosomal internal transcribed spacers in diverse taxa occupying neotropical seasonally dry forests, including Ruprechtia (Polygonaceae), robinioid legumes (Fabaceae), Chaetocalyx and Nissolia (Fabaceae), and Loxopterygium (Anacardiaceae). Species diversifications in these taxa occurred both during and before the Pleistocene in Central America, but were primarily pre-Pleistocene in South America. This indicates plausibility both for models that predict tropical species diversity to be recent and that invoke a role for Pleistocene climatic change, and those that consider it ancient and implicate geological factors such as the Andean orogeny and the closure of the Panama Isthmus. Cladistic vicariance analysis was attempted to identify common factors underlying evolution in these groups. In spite of the similar Mid-Miocene to Pliocene ages of the study taxa, and their high degree of endemism in the different fragments of South American dry forests, the analysis yielded equivocal, non-robust patterns of area relationships.


Assuntos
Biodiversidade , Clima , Evolução Molecular , Modelos Biológicos , Filogenia , Plantas/genética , Sequência de Bases , Teorema de Bayes , América Central , DNA Espaçador Ribossômico/genética , Fenômenos Geológicos , Geologia , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , América do Sul , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...