Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-8, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38375607

RESUMO

Erastin (ERN) is a small molecule that induces different forms of cell death. For example, it has been reported to induce ferroptosis by disrupting tubulin subunits that maintain the voltage-dependent anion channels (VDACs) of mitochondria. Although its possible binding to tubulin has been suggested, the fine details of the interaction between ERN and tubulin are poorly understood. Using a combination of biochemical, cell-model and in silico approaches, we elucidate the interactions of ERN with tubulin and their biological manifestations. After confirming ERN's antiproliferative efficacy (IC50, 20 ± 3.2 M) and induction of cell death in the breast cancer cell line MDA-MB-231, the binding interactions of ERN with tubulin were examined. ERN bound to tubulin in a concentration-dependent manner, disorganizing the structural integrity of the protein, as substantiated via the tryptophan-quenching assay and the aniline-naphthalene sulfonate binding assay, respectively. In silico studies based on molecular docking revealed a docking score of -5.863 kcal/mol, suggesting strong binding interactions of ERN with tubulin. Additionally, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analyses evinced the binding free energy (ΔGbinding) of -31.235 kcal/mol, substantiating strong binding affinity of ERN with tubulin. Ligplot analysis showed hydrogen bonding with specific amino acids (Asn A226, Thr A223, Gln B247 and Val B355). QikProp-based ADME (absorption, distribution, metabolism and excretion) assessment showed considerable therapeutic potential for ERN.Communicated by Ramaswamy H. Sarma.

2.
Chem Biol Interact ; 382: 110606, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330181

RESUMO

We present N-imidazopyridine-noscapinoids, a new class of noscapine derivatives that bind to tubulin and exhibit antiproliferative activity against triple positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cells. The N-atom of the isoquinoline ring of noscapine scaffold was altered in silico by coupling the imidazo [(Ye et al., 1998; Ke et al., 2000) 1,21,2-a] pyridine pharmacophore to rationally develop a series of N-imidazopyridine-noscapinoids (7-11) with high tubulin binding affinity. The predicted ΔGbinding of the N-imidazopyridine-noscapinoids 7-11 varied from -27.45 to -36.15 kcal/mol, a much lower value than noscapine with ΔGbinding -22.49 kcal/mol. The cytotoxicity of N-imidazopyridine-noscapinoids was evaluated using hormone dependent MCF-7, triple negative MDA-MB-231 breast cancer cell lines and primary breast cancer cells. The cytotoxicity of these compounds (represented as IC50 concentration) ranges between 4.04 and 33.93 µM against breast cancer cells without affecting normal cells (IC50 value > 952 µM). All the compounds (7-11) perturbed the cell cycle progression at G2/M phase and triggered apoptosis. Among all the N-imidazopyridine-noscapinoids, N-5-Bromoimidazopyridine-noscapine (9) showed promising antiproliferative activity and was selected for detailed investigation. The onset of apoptosis treated with 9 using MDA-MB-231 revealed morphological changes like cellular shrinkage, chromatin condensation, membrane blebbing, and apoptotic bodies formation. Along with elevated reactive oxygen species (ROS), there was a loss of mitochondrial membrane potential, suggesting induction of apoptosis to cancer cells. Compound 9 was also found to significantly regress the implanted tumour in nude mice as xenografts of MCF-7 cells without any apparent side effects after drug administration. We conclude that N-imidazopyridine-noscapinoids possess excellent potential as a promising drug for treating breast cancers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Noscapina , Humanos , Animais , Camundongos , Feminino , Tubulina (Proteína)/metabolismo , Noscapina/farmacologia , Noscapina/uso terapêutico , Xenoenxertos , Camundongos Nus , Microtúbulos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Piridinas/farmacologia , Piridinas/uso terapêutico , Neoplasias da Mama/patologia , Proliferação de Células , Linhagem Celular Tumoral , Apoptose
3.
Microb Pathog ; 179: 106093, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004966

RESUMO

Opportunistic pathogenic bacteria and their pathogenicity linked with biofilm infections become a severe issue as they resist the actions of multiple antimicrobial drugs. Naturally derived drugs having antibiofilm properties are more effective than chemically synthesized drugs. The plant derived essential oils are a rich source of phytoconstituents with widespread pharmacological values. In the present investigation, a major phytoconstituent, 2-Phenyl Ethyl Methyl Ether (PEME) of Kewda essential oil extracted from the flowers of Pandanus odorifer was explored for its prospective antimicrobial and anti-biofilm properties against ESKAPE pathogenic bacterial strains, Staphylococcus aureus and MTCC 740. The minimum inhibitory concentration (MIC) of PEME was found to be 50 mM against the tested bacterial strains. A gradual decrease in biofilm production was observed when PEME was treated with the sub-MIC concentration. The reduction in biofilm formation was noticeable from qualitative assay i.e., Congo Red Agar Assay (CRA) and further quantified by crystal violet staining assay. The decline in exopolysaccharides production was quantified, with the highest inhibition against MTCC 740 with a decrease of 71.76 ± 4.56% compared to untreated control. From the microscopic analysis (light and fluorescence microscopic method), PEME exhibited inhibitory effect on biofilm formation on the polystyrene surface. The in silico studies stated that PEME could invariably bind to biofilm associated target proteins. Further, transcriptomic data analysis suggested the role of PEME in the down-regulation of specific genes, agrA, sarA, norA and mepR, which are critically associated with bacterial virulence, biofilm dynamics and drug resistance patterns in S. aureus. Further, qRT-PCR analysis validated the role of PEME on biofilm inhibition by relative downregulation of agrA, sarA, norA and mepR genes. Further, advanced in silico methodologies could be employed in future investigations to validate its candidature as promising anti-biofilm agent.


Assuntos
Anti-Infecciosos , Éteres Metílicos , Óleos Voláteis , Infecções Estafilocócicas , Humanos , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Estudos Prospectivos , Infecções Estafilocócicas/microbiologia , Biofilmes , Anti-Infecciosos/farmacologia , Bactérias , Éteres Metílicos/farmacologia , Testes de Sensibilidade Microbiana
4.
3 Biotech ; 13(2): 38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36636578

RESUMO

Noscapine is a natural lead molecule with anticancer activity at a higher concentrations. So, there is an urge for the development of more potent derivatives of noscapine. In this study, we have approached for development of 9-N-arylmethylamino derivatives of noscapine that kills cancer cells without affecting the normal cells. They were designed by substituting N-aryl methyl pharmacophore at the C-9 position and screened out top-ranked three derivatives 13a-c using molecular docking. Further, their theoretical free energy of binding with tubulin was calculated followed by chemical synthesis and experimental validation. In vitro antiproliferative activity of noscapine and its 9-N-arylmethylamino derivatives (13a-c) was carried out using MCF-7 (a triple receptors positive) and MDA-MB-231 (a triple receptor negative) breast cancer cell lines. Further, cytotoxicity to normal cells was examined using human embryonic kidney cells (HEK cells). Inhibition to cell cycle progression and induction of apoptosis was monitored using FACS. The binding of noscapine and 13a-c with tubulin was examined using fluorescence quenching assay. The 9-N-arylmethylamino derivatives of noscapine (13a-c) were found to inhibit the proliferation of cancer cells at a much lower concentration (IC50 values range between 9.1 to 47.3 µM) compared to noscapine (IC50 value is 45.8-59.3 µM). Surprisingly, the proliferation of HEK cells was not inhibited even at a concentration of 100 µM (cytotoxicity is < 5%). These derivatives induced apoptosis by arresting cells at G2/M-phase and also bind to tubulin. The 9-(N-arylmethylamino) noscapinoids have the potential to be a novel therapeutic agent for the treatment of breast cancer. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03445-3.

5.
Chem Biodivers ; 20(2): e202201089, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36690497

RESUMO

Noscapine an FDA-approved antitussive agent. With low cytotoxicity with higher concentrations, noscapine and its derivatives have been shown to have exceptional anticancer properties against a variety of cancer cell lines. In order to increase its potency, in this study, we synthesized a series of new amido-thiadiazol coupled noscapinoids and tested their cytotoxicity in vitro. All of the newly synthesised compounds demonstrated potent cytotoxic potential, with IC50 values ranging from 2.1 to 61.2 µM than the lead molecule, noscapine (IC50 value ranges from 31 to 65.5 µM) across all cell lines, without affecting normal cells (IC50 value is>300 µM). Molecular docking of all these molecules with tubulin (PDB ID: 6Y6D, resolution 2.20 Å) also revealed better binding affinity (docking score range from -5.418 to -9.679 kcal/mol) compared to noscapine (docking score is -5.304 kcal/mol). One of the most promising synthetic derivatives 6aa (IC50 value ranges from 2.5 to 7.3 µM) was found to bind tubulin with the highest binding affinity (ΔGbinding is -28.97 kcal/mol) and induced apoptosis in cancer cells more effectively.


Assuntos
Antineoplásicos , Noscapina , Simulação de Acoplamento Molecular , Noscapina/química , Noscapina/metabolismo , Noscapina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
6.
J Biomol Struct Dyn ; 40(23): 13136-13153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34583618

RESUMO

We developed 1,3-diynyl derivatives of noscapine (an opium alkaloid) through in silico combinatorial approach and screened out a panel of promising derivatives that bind tubulin and display anticancer activity. The selected derivatives such as 9-4-tBu-Ph-Diyne (20p), 9-3,4-Di-Cl-Diyne (20k) and 9-3,4-Di-F-Diyne (22s) noscapinoids revealed improved predicted binding energy of -6.676 kcal/mol for 20p, -7.294 kcal/mol for 20k and -7.750 kcal/mol for 20s respectively in comparison to noscapine (-5.246 kcal/mol). These 1,3-diynyl derivatives (20p, 29k and 20s) were strategically synthesized in high yields by regioselective modification of noscapine scaffold and HPLC purified (purity is >96%). The decrease in intrinsic fluorescence of purified tubulin to 8.39%, 17.39% and 25.47% by 20p, 20k and 20s respectively, compared to control suggests their binding capability to tubulin. Their cytotoxicity activity was validated based on cellular studies using two human breast adenocarcinoma (MCF-7 and MDA-MB-231), a panel of primary breast tumor cells and one normal human embryonic kidney cell (293 T). The 1,3-diynyl noscapinoids, 20p, 20k and 20s inhibited cellular proliferation in all the cancer cells that ranged between 6.2 and 38.9 µM, without affecting the normal healthy cells (cytotoxicity is <5% at 100 µM). Further, these novel derivatives arrest cell cycle in the G2/M-phase, followed by induction of apoptosis to cancer cells. Thus, we conclude that 1,3-diynyl-noscapinoids have great potential to be a novel therapeutic agent for breast cancers.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Noscapina , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Proliferação de Células , Di-Inos/farmacologia , Linhagem Celular Tumoral
7.
J Biomol Struct Dyn ; 40(15): 6725-6736, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33627059

RESUMO

We present a series of 9-arylimino derivatives of noscapine (an antitussive plant alkaloid) that binds to tubulin and displaying anticancer activity against a panel of breast cancer cells. These compounds were rationally designed by coupling of Schiff base containing imine groups at position-9 of the isoquinoline ring of noscapine. Based on a combination of Glide docking and free energy of binding (FEB) calculation, we have screened a panel of three 9-compounds, 12-14 with improved binding affinity with tubulin compared to noscapine. The predicted FEB is -6.166 kcal/mol for 12, -6.411 kcal/mol for 13 and -7.512 kcal/mol for 14. In contrast, the predicted FRB of noscapine is -5.135 kcal/mol. These novel derivatives were strategically synthesized and validated their anticancer activity based on cellular studies using two human breast adenocarcinoma, MCF-7 and MDAMB-231, as well as with a panel of primary breast tumor cells isolated from patients. Interestingly, all these derivatives inhibited cellular proliferation in all the cancer cells that ranged between 3.6 and 26.4 µM, which is 11.02-2.03 fold lower than that of noscapine. Unlike previously reported derivatives of noscapine that arrest cells in the S-phase, these novel derivatives effectively inhibit proliferation of cancer cells, arrest the cell cycle in the G2/M-phase and induced apoptosis. Thus, we conclude that 9-arylimino derivatives of noscapine have great potential to be a novel therapeutic agent for breast cancers.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Noscapina , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Tubulina (Proteína)/química
8.
Chem Biol Drug Des ; 98(3): 445-465, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051055

RESUMO

The scaffold structure of noscapine (an antitussive plant alkaloid) was modified by inducting N-aryl methyl pharmacophore at C-9 position of the isoquinoline ring to rationally design and screened three novel 9-(N-arylmethylamino) noscapinoids, 15-17 with robust binding affinity with tubulin. The selected 9-(N-arylmethylamino) noscapinoids revealed improved predicted binding energy of -6.694 kcal/mol for 15, -7.118 kcal/mol for 16 and -7.732 kcal/mol for 17, respectively in comparison to the lead molecule (-5.135 kcal/mol). These novel derivatives were chemically synthesized and validated their anticancer activity based on cellular studies using two human breast adenocarcinoma, MCF-7 and MDA-MB-231, as well as with a panel of primary breast tumor cells. These derivatives inhibited cellular proliferation in all the cancer cells that ranged between 3.2 and 32.2 µM, which is 11.9 to 1.8 fold lower than that of noscapine. These novel derivatives effectively arrest the cell cycle in the G2/M phase followed by apoptosis and appearance of apoptotic cells. Thus, we conclude that 9-(N-arylmethyl amino) noscapinoids, 15-17 have a high probability to be a novel therapeutic agent for breast cancers.


Assuntos
Aminas/química , Antineoplásicos/síntese química , Desenho de Fármacos , Noscapina/análogos & derivados , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Noscapina/metabolismo , Noscapina/farmacologia , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
9.
J Mol Graph Model ; 106: 107933, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991960

RESUMO

We present a new class of derivatives of noscapine, 1,3-diynyl-noscapinoids of an antitussive plant alkaloid, noscapine based on our in silico efforts that binds tubulin and displays anticancer activity against a panel of breast cancer cells. Structure-activity analyses pointed the C-9 position of the isoquinoline ring which was modified by coupling of 1,3-diynyl structural motifs to rationally design and screened a series of novel 1,3-diynyl-noscapinoids (20-22) with robust binding affinity with tubulin. The selected 1,3-diynyl-noscapinoids, 20-22 revealed improved predicted binding energy of -6.568 kcal/mol for 20, -7.367 kcal/mol for 21 and -7.922 kcal/mol for 22, respectively in comparison to the lead molecule (-5.246 kcal/mol). These novel derivatives were chemically synthesized and validated their anticancer activity based on cellular studies using two human breast adenocarcinoma, MCF-7 and MDAMB-231, as well as with a panel of primary breast cancer cells isolated from patients. Interestingly, all these derivatives inhibited cellular proliferation in all the cancer cells that ranged between 6.2 to 38.9 µM, which is 6.7 to 1.5 fold lower than that of noscapine. Unlike previously reported derivatives of noscapine that arrests cells in the S-phase, these novel derivatives effectively inhibit proliferation of cancer cells, arrests cell cycle in the G2/M-phase followed by apoptosis and appearance of apoptotic cells. Thus, we conclude that 1,3-diynyl-noscapinoids have great potential to be a novel therapeutic agent for breast cancers.


Assuntos
Antineoplásicos , Noscapina , Antineoplásicos/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Humanos , Noscapina/farmacologia , Ligação Proteica , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA