Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Clin Invest ; 130(8): 4235-4251, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32427589

RESUMO

Aberrant, neovascular retinal blood vessel growth is a vision-threatening complication in ischemic retinal diseases. It is driven by retinal hypoxia frequently caused by capillary nonperfusion and endothelial cell (EC) loss. We investigated the role of EC apoptosis in this process using a mouse model of ischemic retinopathy, in which vessel closure and EC apoptosis cause capillary regression and retinal ischemia followed by neovascularization. Protecting ECs from apoptosis in this model did not prevent capillary closure or retinal ischemia. Nonetheless, it prevented the clearance of ECs from closed capillaries, delaying vessel regression and allowing ECs to persist in clusters throughout the ischemic zone. In response to hypoxia, these preserved ECs underwent a vessel sprouting response and rapidly reassembled into a functional vascular network. This alleviated retinal hypoxia, preventing subsequent pathogenic neovascularization. Vessel reassembly was not limited by VEGFA neutralization, suggesting it was not dependent on the excess VEGFA produced by the ischemic retina. Neutralization of ANG2 did not prevent vessel reassembly, but did impair subsequent angiogenic expansion of the reassembled vessels. Blockade of EC apoptosis may promote ischemic tissue revascularization by preserving ECs within ischemic tissue that retain the capacity to reassemble a functional network and rapidly restore blood supply.


Assuntos
Apoptose , Células Endoteliais/metabolismo , Isquemia/metabolismo , Vasos Retinianos/metabolismo , Ribonuclease Pancreático/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Isquemia/genética , Isquemia/patologia , Camundongos , Camundongos Knockout , Doenças Retinianas , Vasos Retinianos/patologia , Ribonuclease Pancreático/genética , Fator A de Crescimento do Endotélio Vascular/genética
2.
Elife ; 92020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32073398

RESUMO

As the general population ages, more people are affected by eye diseases, such as retinopathies. It is therefore critical to improve imaging of eye disease mouse models. Here, we demonstrate that 1) rapid, quantitative 3D and 4D (time lapse) imaging of cellular and subcellular processes in the mouse eye is feasible, with and without tissue clearing, using light-sheet fluorescent microscopy (LSFM); 2) flat-mounting retinas for confocal microscopy significantly distorts tissue morphology, confirmed by quantitative correlative LSFM-Confocal imaging of vessels; 3) LSFM readily reveals new features of even well-studied eye disease mouse models, such as the oxygen-induced retinopathy (OIR) model, including a previously unappreciated 'knotted' morphology to pathological vascular tufts, abnormal cell motility and altered filopodia dynamics when live-imaged. We conclude that quantitative 3D/4D LSFM imaging and analysis has the potential to advance our understanding of the eye, in particular pathological, neurovascular, degenerative processes.


Eye diseases affect millions of people worldwide and can have devasting effects on people's lives. To find new treatments, scientists need to understand more about how these diseases arise and how they progress. This is challenging and progress has been held back by limitations in current techniques for looking at the eye. Currently, the most commonly used method is called confocal imaging, which is slow and distorts the tissue. Distortion happens because confocal imaging requires that thin slices of eye tissue from mice used in experiments are flattened on slides; this makes it hard to accurately visualize three-dimensional structures in the eye. New methods are emerging that may help. One promising method is called light-sheet fluorescent microscopy (or LSFM for short). This method captures three-dimensional images of the blood vessels and cells in the eye. It is much faster than confocal imaging and allows scientists to image tissues without slicing or flattening them. This could lead to more accurate three-dimensional images of eye disease. Now, Prahst et al. show that LSFM can quickly produce highly detailed, three-dimensional images of mouse retinas, from the smallest parts of cells to the entire eye. The technique also identified new features in a well-studied model of retina damage caused by excessive oxygen exposure in young mice. Previous studies of this model suggested the disease caused blood vessels in the eye to balloon, hinting that drugs that shrink blood vessels would help. But using LSFM, Prahst et al. revealed that these blood vessels actually take on a twisted and knotted shape. This suggests that treatments that untangle the vessels rather than shrink them are needed. The experiments show that LSFM is a valuable tool for studying eye diseases, that may help scientists learn more about how these diseases arise and develop. These new insights may one day lead to better tests and treatments for eye diseases.


Assuntos
Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Retina/fisiologia , Animais , Oftalmopatias/diagnóstico , Oftalmopatias/terapia , Imageamento Tridimensional/métodos , Camundongos , Vasos Retinianos/diagnóstico por imagem
3.
J Exp Med ; 214(4): 1049-1064, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28289053

RESUMO

The vascular endothelial growth factor (VEGF) isoform VEGF165 stimulates vascular growth and hyperpermeability. Whereas blood vessel growth is essential to sustain organ health, chronic hyperpermeability causes damaging tissue edema. By combining in vivo and tissue culture models, we show here that VEGF165-induced vascular leakage requires both VEGFR2 and NRP1, including the VEGF164-binding site of NRP1 and the NRP1 cytoplasmic domain (NCD), but not the known NCD interactor GIPC1. In the VEGF165-bound receptor complex, the NCD promotes ABL kinase activation, which in turn is required to activate VEGFR2-recruited SRC family kinases (SFKs). These results elucidate the receptor complex and signaling hierarchy of downstream kinases that transduce the permeability response to VEGF165. In a mouse model with choroidal neovascularisation akin to age-related macular degeneration, NCD loss attenuated vessel leakage without affecting neovascularisation. These findings raise the possibility that targeting NRP1 or its NCD interactors may be a useful therapeutic strategy in neovascular disease to reduce VEGF165-induced edema without compromising vessel growth.


Assuntos
Permeabilidade Capilar , Neuropilina-1/fisiologia , Proteínas Proto-Oncogênicas c-abl/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Ativação Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Semaforina-3A/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
4.
Nat Commun ; 7: 13517, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882935

RESUMO

Vascular permeability and neovascularization are implicated in many diseases including retinopathies and diabetic wound healing. Robo4 is an endothelial-specific transmembrane receptor that stabilizes the vasculature, as shown in Robo4-/- mice that develop hyperpermeability, but how Robo4 signals remained unclear. Here we show that Robo4 deletion enhances permeability and revascularization in oxygen-induced retinopathy (OIR) and accelerates cutaneous wound healing. To determine Robo4 signalling pathways, we generated transgenic mice expressing a truncated Robo4 lacking the cytoplasmic domain (Robo4ΔCD). Robo4ΔCD expression is sufficient to prevent permeability, and inhibits OIR revascularization and wound healing in Robo4-/- mice. Mechanistically, Robo4 does not affect Slit2 signalling, but Robo4 and Robo4ΔCD counteract Vegfr2-Y949 (Y951 in human VEGFR2) phosphorylation by signalling through the endothelial UNC5B receptor. We conclude that Robo4 inhibits angiogenesis and vessel permeability independently of its cytoplasmic domain, while activating VEGFR2-Y951 via ROBO4 inhibition might accelerate tissue revascularization in retinopathy of prematurity and in diabetic patients.


Assuntos
Permeabilidade Capilar/genética , Neovascularização Patológica/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Doenças Retinianas/genética , Animais , Retinopatia Diabética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/metabolismo , Oxigenoterapia/efeitos adversos , Fosforilação , Receptores de Superfície Celular , Receptores Imunológicos/metabolismo , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Retinopatia da Prematuridade , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética
5.
Sci Signal ; 9(425): ra42, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27117252

RESUMO

Neuropilin-1 (NRP1) regulates developmental and pathological angiogenesis, arteriogenesis, and vascular permeability, acting as a coreceptor for semaphorin 3A (Sema3A) and the 165-amino acid isoform of vascular endothelial growth factor A (VEGF-A165). NRP1 is also the receptor for the CendR peptides, a class of cell- and tissue-penetrating peptides with a specific R-x-x-R carboxyl-terminal motif. Because the cytoplasmic domain of NRP1 lacks catalytic activity, NRP1 is mainly thought to act through the recruitment and binding to other receptors. We report here that the NRP1 intracellular domain mediates vascular permeability. Stimulation with VEGF-A165, a ligand-blocking antibody, and a CendR peptide led to NRP1 accumulation at cell-cell contacts in endothelial cell monolayers, increased cellular permeability in vitro and vascular leakage in vivo. Biochemical analyses, VEGF receptor-2 (VEGFR-2) silencing, and the use of a specific VEGFR blocker established that the effects induced by the CendR peptide and the antibody were independent of VEGFR-2. Moreover, leakage assays in mice expressing a mutant NRP1 lacking the cytoplasmic domain revealed that this domain was required for NRP1-induced vascular permeability in vivo. Hence, these data define a vascular permeability pathway mediated by NRP1 but independent of VEGFR-2 activation.


Assuntos
Permeabilidade Capilar/fisiologia , Neuropilina-1/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Western Blotting , Comunicação Celular/fisiologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunoprecipitação , Camundongos , Neuropilina-1/química , Neuropilina-1/genética , Domínios Proteicos , Reação em Cadeia da Polimerase em Tempo Real , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Cancer Invest ; 34(1): 39-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735326

RESUMO

Despite encouraging response rate of bevacizumab (BVZ) in recurrent glioblastoma, many patients do not respond to this schedule and most of the responders develop an early relapse. Plasma concentrations of VEGF, PlGF, Ang2, and sTie2 were assessed by ELISA before and during BVZ treatment in seventy patients. Baseline levels of VEGF-A, and PlGF were higher in patients than in healthy volunteers, whereas no difference was found for Ang2, and sTie2. No biomarker at baseline was associated with response, PFS or OS. At recurrence, the authors observed an increase of Ang2 suggesting that Ang2/sTie2 could be involved in the resistance to BVZ.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/sangue , Antineoplásicos/uso terapêutico , Bevacizumab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/sangue , Glioblastoma/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Bevacizumab/farmacologia , Biomarcadores , Estudos de Casos e Controles , Progressão da Doença , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioblastoma/secundário , Humanos , Masculino , Proteínas de Membrana/sangue , Recidiva Local de Neoplasia , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/sangue
7.
Arterioscler Thromb Vasc Biol ; 34(7): 1468-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24764455

RESUMO

OBJECTIVE: The H2.0-like homeobox transcription factor (HLX) plays an essential role in visceral organogenesis in mice and has been shown to regulate angiogenic sprouting in vitro and in zebrafish embryos. We therefore examined the role of HLX in vascular development in mouse and avian embryos. APPROACH AND RESULTS: In situ hybridization showed that Hlx is expressed in a subset of sprouting blood vessels in postnatal mouse retinas and embryos. Hlx expression was conserved in quail embryos and upregulated in blood vessels at the onset of circulation. In vitro assays showed that Hlx is dynamically regulated by growth factors and shear stress alterations. Proangiogenic vascular endothelial growth factor induces Hlx expression in cultured endothelial cells, whereas signals that induce stalk cell identity lead to a reduction in Hlx expression. HLX was also downregulated in embryos in which flow was ablated, whereas injection of a starch solution, which increases blood viscosity and therefore shear stress, causes an upregulation in HLX. HLX knockdown in vitro resulted in a reduction in tip cell marker expression and in reduced angiogenic sprouting, but Hlx(-/-) embryos showed no defect in vascular sprouting at E8.5, E9.5, or E11.5 in vivo. Vascular remodeling of the capillary plexus was altered in Hlx(-/-) embryos, with a modestly enlarged venous plexus and reduction of the arterial plexus. CONCLUSIONS: Our findings indicate not only that Hlx regulates sprouting in vitro, but that its role in sprouting is nonessential in vivo. We find HLX is regulated by shear stress and a subtle defect in vascular remodeling is present in knockout embryos.


Assuntos
Vasos Sanguíneos/metabolismo , Proteínas de Homeodomínio/metabolismo , Neovascularização Fisiológica , Fatores de Transcrição/metabolismo , Saco Vitelino/irrigação sanguínea , Animais , Vasos Sanguíneos/embriologia , Viscosidade Sanguínea , Células Cultivadas , Embrião de Mamíferos/irrigação sanguínea , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Proteínas de Homeodomínio/genética , Humanos , Mecanotransdução Celular , Camundongos , Camundongos Knockout , Codorniz , Interferência de RNA , Fluxo Sanguíneo Regional , Estresse Mecânico , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transfecção
8.
Dev Cell ; 25(2): 156-68, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23639442

RESUMO

Neuropilin 1 (NRP1) plays an important but ill-defined role in VEGF-A signaling and vascular morphogenesis. We show that mice with a knockin mutation that ablates the NRP1 cytoplasmic tail (Nrp1(cyto)) have normal angiogenesis but impaired developmental and adult arteriogenesis. The arteriogenic defect was traced to the absence of a PDZ-dependent interaction between NRP1 and VEGF receptor 2 (VEGFR2) complex and synectin, which delayed trafficking of endocytosed VEGFR2 from Rab5+ to EAA1+ endosomes. This led to increased PTPN1 (PTP1b)-mediated dephosphorylation of VEGFR2 at Y(1175), the site involved in activating ERK signaling. The Nrp1(cyto) mutation also impaired endothelial tubulogenesis in vitro, which could be rescued by expressing full-length NRP1 or constitutively active ERK. These results demonstrate that the NRP1 cytoplasmic domain promotes VEGFR2 trafficking in a PDZ-dependent manner to regulate arteriogenic ERK signaling and establish a role for NRP1 in VEGF-A signaling during vascular morphogenesis.


Assuntos
Artérias/fisiopatologia , Citoplasma/metabolismo , Morfogênese/fisiologia , Neovascularização Patológica , Neuropilina-1/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Artérias/citologia , Células Cultivadas , Endocitose/fisiologia , Endossomos/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Fosforilação , Transdução de Sinais , Transferrina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Blood ; 121(19): 3988-96, S1-9, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23529931

RESUMO

Arterial morphogenesis is one of the most critical events during embryonic vascular development. Although arterial fate specification is mainly controlled by the Notch signaling pathway, arterial-venous patterning is modulated by a number of guidance factors. How these pathways are regulated is still largely unknown. Here, we demonstrate that endothelial activation of RAF1/extracellular signal-regulated kinase (ERK) pathway regulates arterial morphogenesis and arterial-venous patterning via Δ/Notch and semaphorin signaling. Introduction of a single amino acid RAF1 mutant (RAF1 Ser259Ala), which renders it resistant to inhibition by phosphorylation, into endothelial cells in vitro induced expression of virtually the entire embryonic arteriogenic program and activated semaphorin 6A-dependent endothelial cell-cell repulsion. In vivo, endothelial-specific expression of RAF1(S259A) during development induced extensive arterial morphogenesis both in the yolk sac and the embryo proper and disrupted arterial-venous patterning. Our results suggest that endothelial ERK signaling is critical for both arteriogenesis and arterial-venous patterning and that RAF1 Ser(259) phosphorylation plays a critical role in preventing unopposed ERK activation.


Assuntos
Artérias/embriologia , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Morfogênese , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Artérias/metabolismo , Células Cultivadas , Embrião de Mamíferos , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Morfogênese/genética , Morfogênese/fisiologia , Gravidez , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/fisiologia , Semaforinas/genética
10.
Circ Res ; 111(4): 437-45, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22723296

RESUMO

RATIONALE: The lymphatic vasculature plays a major role in fluid homeostasis, absorption of dietary lipids, and immune surveillance. Fluid transport depends on the presence of intraluminal valves within lymphatic collectors. Defective formation of lymphatic valves leads to lymphedema, a progressive and debilitating condition for which curative treatments are currently unavailable. How lymphatic valve formation is regulated remains largely unknown. OBJECTIVE: We investigated if the repulsive axon guidance molecule Semaphorin3A (Sema3A) plays a role in lymphatic valve formation. METHODS AND RESULTS: We show that Sema3A mRNA is expressed in lymphatic vessels and that Sema3A protein binds to lymphatic valves expressing the Neuropilin-1 (Nrp1) and PlexinA1 receptors. Using mouse knockout models, we show that Sema3A is selectively required for lymphatic valve formation, via interaction with Nrp1 and PlexinA1. Sema3a(-/-) mice exhibit defects in lymphatic valve formation, which are not due to abnormal lymphatic patterning or sprouting, and mice carrying a mutation in the Sema3A binding site of Nrp1, or deficient for Plxna1, develop lymphatic valve defects similar to those seen in Sema3a(-/-) mice. CONCLUSIONS: Our data demonstrate an essential direct function of Sema3A-Nrp1-PlexinA1 signaling in lymphatic valve formation.


Assuntos
Vasos Linfáticos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropilina-1/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforina-3A/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/administração & dosagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Vasos Linfáticos/embriologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfogênese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neuropilina-1/deficiência , Neuropilina-1/genética , Neuropilina-1/imunologia , Fenótipo , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Semaforina-3A/deficiência , Semaforina-3A/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Dev Cell ; 22(3): 489-500, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22421041

RESUMO

Activin receptor-like kinase 1 (ALK1) is an endothelial-specific member of the TGF-ß/BMP receptor family that is inactivated in patients with hereditary hemorrhagic telangiectasia (HHT). How ALK1 signaling regulates angiogenesis remains incompletely understood. Here we show that ALK1 inhibits angiogenesis by cooperating with the Notch pathway. Blocking Alk1 signaling during postnatal development in mice leads to retinal hypervascularization and the appearance of arteriovenous malformations (AVMs). Combined blockade of Alk1 and Notch signaling further exacerbates hypervascularization, whereas activation of Alk1 by its high-affinity ligand BMP9 rescues hypersprouting induced by Notch inhibition. Mechanistically, ALK1-dependent SMAD signaling synergizes with activated Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2, thereby repressing VEGF signaling, tip cell formation, and endothelial sprouting. Taken together, these results uncover a direct link between ALK1 and Notch signaling during vascular morphogenesis that may be relevant to the pathogenesis of HHT vascular lesions.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Malformações Arteriovenosas/enzimologia , Neovascularização Fisiológica/fisiologia , Receptores Notch/fisiologia , Receptores de Ativinas Tipo I/antagonistas & inibidores , Receptores de Activinas Tipo II , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas de Ciclo Celular/fisiologia , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Repressoras/fisiologia , Retina/crescimento & desenvolvimento , Retina/patologia , Transdução de Sinais , Proteínas Smad/fisiologia , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/fisiopatologia , Fatores de Crescimento do Endotélio Vascular/fisiologia
12.
Arterioscler Thromb Vasc Biol ; 31(1): 151-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20947821

RESUMO

OBJECTIVE: To characterize the role of a vascular-expressed class 3 semaphorin (semaphorin 3G [Sema3G]). METHODS AND RESULTS: Semaphorins have been identified as axon guidance molecules. Yet, they have more recently also been characterized as attractive and repulsive regulators of angiogenesis. Through a transcriptomic screen, we identified Sema3G as a molecule of angiogenic endothelial cells. Sema3G-deficient mice are viable and exhibit no overt vascular phenotype. Yet, LacZ expression in the Sema3G locus revealed intense arterial vascular staining in the angiogenic vasculature, starting at E9.5, which was detectable throughout adolescence and downregulated in adult vasculature. Sema3G is expressed as a full-length 100-kDa secreted molecule that is processed by furin proteases to yield 95- and a 65-kDa Sema domain-containing subunits. Full-length Sema3G binds to NP2, whereas processed Sema3G binds to NP1 and NP2. Expression profiling and cellular experiments identified autocrine effects of Sema3G on endothelial cells and paracrine effects on smooth muscle cells. CONCLUSIONS: Although the mouse knockout phenotype suggests compensatory mechanisms, the experiments identify Sema3G as a primarily endothelial cell-expressed class 3 semaphorin that controls endothelial and smooth muscle cell functions in autocrine and paracrine manners, respectively.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Perfilação da Expressão Gênica , Semaforinas/metabolismo , Animais , Comunicação Autócrina , Proteína C-Reativa/metabolismo , Células Cultivadas , Técnicas de Cocultura , Endotélio Vascular/embriologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/embriologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Comunicação Parácrina , Fenótipo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Interferência de RNA , Proteínas Recombinantes/metabolismo , Semaforinas/deficiência , Semaforinas/genética , Transfecção , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Mol Cancer Res ; 8(10): 1297-309, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21047731

RESUMO

The tyrosine kinase receptor EphB4 interacts with its ephrinB2 ligand to act as a bidirectional signaling system that mediates adhesion, migration, and guidance by controlling attractive and repulsive activities. Recent findings have shown that hematopoietic cells expressing EphB4 exert adhesive functions towards endothelial cells expressing ephrinB2. We therefore hypothesized that EphB4/ephrinB2 interactions may be involved in the preferential adhesion of EphB4-expressing tumor cells to ephrinB2-expressing endothelial cells. Screening of a panel of human tumor cell lines identified EphB4 expression in nearly all analyzed tumor cell lines. Human A375 melanoma cells engineered to express either full-length EphB4 or truncated EphB4 variants which lack the cytoplasmic catalytic domain (ΔC-EphB4) adhered preferentially to ephrinB2-expressing endothelial cells. Force spectroscopy by atomic force microscopy confirmed, on the single cell level, the rapid and direct adhesive interaction between EphB4 and ephrinB2. Tumor cell trafficking experiments in vivo using sensitive luciferase detection techniques revealed significantly more EphB4-expressing A375 cells but not ΔC-EphB4-expressing or mock-transduced control cells in the lungs, the liver, and the kidneys. Correspondingly, ephrinB2 expression was detected in the microvessels of these organs. The specificity of the EphB4-mediated tumor homing phenotype was validated by blocking the EphB4/ephrinB2 interaction with soluble EphB4-Fc. Taken together, these experiments identify adhesive EphB4/ephrinB2 interactions between tumor cells and endothelial cells as a mechanism for the site-specific metastatic dissemination of tumor cells. AACR.


Assuntos
Comunicação Celular , Movimento Celular , Endotélio Vascular/patologia , Efrina-B2/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Melanoma/secundário , Receptor EphB4/fisiologia , Animais , Adesão Celular/genética , Comunicação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Endotélio Vascular/metabolismo , Efrina-B2/biossíntese , Efrina-B2/genética , Humanos , Melanoma/irrigação sanguínea , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptor EphB4/metabolismo
14.
Blood ; 116(19): 4025-33, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20705756

RESUMO

Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Fisiológica/genética , Proteínas Adaptadoras de Transdução de Sinal , Adipocinas , Animais , Apelina , Receptores de Apelina , Proteínas de Ligação ao Cálcio , Capilares/citologia , Capilares/crescimento & desenvolvimento , Capilares/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Haploinsuficiência , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vasos Retinianos/citologia , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra
15.
J Biol Chem ; 283(37): 25110-25114, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18628209

RESUMO

Vascular endothelial growth factor (VEGF) acts as a hierarchically high switch of the angiogenic cascade by interacting with its high affinity VEGF receptors and with neuropilin co-receptors. VEGF(165) binds to both Neuropilin-1 (NP-1) and VEGFR-2, and it is believed that ligand binding forms an extracellular bridge between both molecules. This leads to complex formation, thereby enhancing VEGFR-2 phosphorylation and subsequent signaling. We found that inhibition of VEGF receptor (VEGFR) phosphorylation reduced complex formation between NP-1 and VEGFR-2, suggesting a functional role of the cytoplasmic domain of VEGFR-2 for complex formation. Correspondingly, deleting the PDZ-binding domain of NP-1 decreased complex formation, indicating that extracellular VEGF(165) binding is not sufficient for VEGFR-2-NP-1 interaction. Synectin is an NP-1 PDZ-binding domain-interacting molecule. Experiments in Synectin-deficient endothelial cells revealed reduced VEGFR-2-NP-1 complex formation, suggesting a role for Synectin in VEGFR-2-NP-1 signaling. Taken together, the experiments have identified a novel mechanism of NP-1 interaction with VEGFR-2, which involves the cytoplasmic domain of NP-1.


Assuntos
Neuropilina-1/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Proteínas de Transporte/química , Citoplasma/metabolismo , Humanos , Camundongos , Modelos Biológicos , Neuropeptídeos/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
FASEB J ; 21(3): 915-26, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17185751

RESUMO

The neuropilin-1 (np1) receptor binds the 165 amino-acid form of vascular endothelial growth factor165 (VEGF165) and functions as an enhancer that potentiates VEGF165 signaling via the VEGFR-2 tyrosine-kinase receptor. To study the mechanism by which neuropilins potentiate VEGF activity we produced a VEGF165 mutant (VEGF165KF) that binds to neuropilins but displays a much lower affinity toward VEGFR-1 and VEGFR-2. VEGF165KF failed to induce VEGFR-2 phosphorylation in cells lacking neuropilins. However, in the presence of np1, VEGF165KF bound weakly to VEGFR-2, induced VEGFR-2 phosphorylation, and activated ERK1/2. Interestingly, VEGF165KF did not promote formation of VEGFR-2/np1 complexes nor did high concentrations of VEGF165KF inhibit VEGF165 induced formation of such complexes, suggesting that VEGF165 does not stabilize VEGFR-2/np1 complexes by forming bridges spanning VEGFR-2 and np1. VEGF121 is a VEGF form that does not bind to neuropilins. Surprisingly, both np1 and neuropilin-2 (np2) enhanced VEGF121-induced phosphorylation of VEGFR-2 and VEGF121-induced proliferation of endothelial cells. The enhancement of VEGF121 activity by np1 was accompanied by a 10-fold increase in binding affinity to VEGFR-2 and was not associated with the formation of new VEGFR-2/np1 complexes. These observations suggest that neuropilins enhance the activity of VEGF forms that do not bind to neuropilins, indicate that np2 is a functional VEGF receptor, and imply that spontaneously formed VEGFR-2/np1 complexes suffice for efficient neuropilin mediated enhancement of VEGF activity.


Assuntos
Endotélio Vascular/fisiologia , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Transdução de Sinais/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Substituição de Aminoácidos , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Mutação , Transdução de Sinais/efeitos dos fármacos
17.
Cancer Res ; 66(11): 5686-95, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16740706

RESUMO

The transforming growth factor-beta superfamily member activin and its antagonist, follistatin, act as a pleiotropic growth factor system that controls cell proliferation, differentiation, and apoptosis. Activin inhibits fibroblast growth factor 2-induced sprouting angiogenesis in vitro (spheroidal angiogenesis assay) and in vivo (Matrigel assay). To further study the role of the activin/follistatin system during angiogenesis and tumor progression, activin- and follistatin-expressing R30C mammary carcinoma cells were studied in mouse tumor experiments. Surprisingly, activin-expressing tumors grew much faster than follistatin-expressing tumors although they failed to induce increased angiogenesis (as evidenced by low microvessel density counts). Conversely, follistatin-expressing tumors were much smaller but had a dense network of small-diameter capillaries. Qualitative angioarchitectural analyses (mural cell recruitment, perfusion) revealed no major functional differences of the tumor neovasculature. Analysis of activin- and follistatin-expressing R30C cells identified a cell autonomous role of this system in controlling tumor cell growth. Whereas proliferation of R30C cells was not altered, follistatin-expressing R30C cells had an enhanced susceptibility to undergo apoptosis. These findings in experimental tumors are complemented by an intriguing case report of a human renal cell carcinoma that similarly shows a dissociation of angiogenesis and tumorigenesis during tumor progression. Collectively, the data shed further light into the dichotomous stimulating and inhibiting roles that the activin/follistatin system can exert during angiogenesis and tumor progression. Furthermore, the experiments provide a critical proof-of-principle example for the dissociation of angiogenesis and tumorigenesis, supporting the concept that tumor growth may not be dependent on increased angiogenesis as long as a minimal intratumoral microvessel density is maintained.


Assuntos
Ativinas/biossíntese , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/metabolismo , Folistatina/biossíntese , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/metabolismo , Ativinas/genética , Animais , Apoptose/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma de Células Renais/patologia , Ciclo Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Folistatina/genética , Humanos , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Transfecção , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...