Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 143: 107099, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190798

RESUMO

INTRODUCTION: Antihypertensive drugs that are chemically synthesized usually tend to initiate different health complications. The quest for bioactive molecules to create novel medicines has focused on Marine resources like seaweeds. These molecules can furnish a positive probability for patients to gain benefits from these natural substances. METHODS: This study aims to identify phytoconstituents present in brown seaweed-Padina boergesenii. Five different solvents were used to prepare extracts and their antioxidant activity as well as antihypertensive activity was evaluated. Phytoconstituents were identified using LC-MS/MS, and subjected to molecular interaction against ACE enzyme. RESULTS: The 70% ethanolic extract exhibited the highest total phenolic content (TPC), significant radical scavenging activity and concentration dependent Angiotensin Converting Enzyme (ACE) inhibition activity. LC-MS/MS analysis confirmed the presence of bioactive compounds from which 7,8 dihydroxycoumarin had the highest affinity against ACE enzyme in molecular docking study. CONCLUSION: These findings advocate that Padina boergesenii can be a potential source for developing novel antihypertensive therapeutic drug(s) and could pave the way for evolving effective and safe remedies from natural resources.


Assuntos
Anti-Hipertensivos , Alga Marinha , Humanos , Anti-Hipertensivos/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Alga Marinha/química
2.
J Exp Ther Oncol ; 12(2): 137-140, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29161781

RESUMO

OBJECTIVE: Lupeol, A triterpenoid found in variety of plants is reported to have beneficial medicinal effects on several ailments. Lupeol is also found to show inhibitory effect on proliferation of breast cancer cells. Metastasis is considered to be a major cause for worldwide deaths related to cancer. Ras related MAPK Signaling Pathway is one of the crucial pathways leading to metastasis. Lupeols binding possibility with Ras is already reported. In present study, Interaction between with downstream proteins of Ras- MAPK pathway, Raf ,MEK ,ERK1/2 and their corresponding domains are studied using STRING Database and their structures are retrieved in PDB Format. Lupeols binding affinity with downstream proteins of these signaling proteins at their interacting domains are analyzed. Here in silico docking approach to identify binding sites of each of these proteins with Lupeol is used. FDA approved standard drug molecule CH5126766 was used as reference ligand. Lupeol shows potent binding at significant sites with extremely high affinity. Since it binds with all the proteins involved in the pathway with high efficiency it is an important compound which can be developed as a therapeutic molecule.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/química , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Sítios de Ligação , Cumarínicos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo
3.
J Pharm Bioallied Sci ; 4(Suppl 1): S101-3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23066178

RESUMO

The objective of this study is to formulate ketoprofen loaded microspheres of Acrycoat S100 by an o/w emulsion solvent evaporation method. It potently inhibits the enzyme cyclooxygenase resulting in prostaglandin synthesis inhibition. Ketoprofen causes an irritation in the gastrointestinal mucous membrane and possesses a bitter taste and aftertaste. The half-life in plasma is about 1-2hrs. This makes ketoprofen a very good candidate for the formulation of controlled release dosage forms. Ketoprofen microspheres help to protect the gastric mucous membrane from drug irritation and to mask its taste. The prepared microspheres were evaluated for micromeritic properties, particle size, effect of surfactant concentration, percentage yield, incorporation efficiency, drug polymer compatibility (IR and DSC study), scanning electron microscopy and in vitro drug release. The microspheres produced exhibited good encapsulation efficiencies and micromeritic properties. Encapsulation efficiency of microsphere is around 78%. The mean diameters of microspheres were found in required micrometer range. The results of optimized formulations showed a narrow size distribution and smooth surface. The DSC and the FTIR analysis showed the absence of any potent incompatibility between the drug and the polymer. In-vitro release showed 86.4% drug release after 12 hours. Results of present study suggest that Acrycoat S100 loaded microsphere of ketoprofen can be successfully designed to develop sustained drug delivery system. The solvent evaporation method is a suitable technique for the preparation of Acrycoat S100 microspheres for controlling the release of Ketoprofen for a prolonged duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA