Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(1): 336-351, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34809533

RESUMO

PICK1 (Protein interacting with C kinase-1) plays a key role in the regulation of intracellular trafficking of AMPA GluA2 subunit that is linked with synaptic plasticity. PICK1 is a scaffolding protein and binds numerous proteins through its PDZ domain. Research showed that synaptic plasticity is altered upon disrupting the GluA2-PDZ interactions. Inhibiting PDZ and GluA2 binding lead to beneficial effects in the cure of neurological diseases thus, targeting PDZ domain is proposed as a novel therapeutic target in such diseases. For this, various classes of synthetic peptides were tested. Though small organic molecules have been utilized to prevent these interactions, the number of such molecules is inadequate. Hence, in this study, ten molecular libraries containing large number of molecules were screened against the PDZ domain using pharmacophore-based virtual screening to find the best hits for the PDZ domain. Molecular docking and molecular dynamics simulation studies revealed that Hit_II is a potent inhibitor for the PDZ domain and confirm the allosteric nature of Hit_III. Additionally, ADME analysis suggests the drug-likeness of both Hit_II and Hit_III. This study suggests that tested hits may have potency against the PDZ domain and can be considered effective to treat neurological disorders.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Proteínas de Transporte/química , Domínios PDZ , Simulação de Acoplamento Molecular , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Farmacóforo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
In Silico Pharmacol ; 8(1): 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33184600

RESUMO

Outbreak of Coronavirus Disease 2019 (COVID-19) has become a great challenge for scientific community globally. Virus enters cell through spike glycoprotein fusion with ACE2 (Angiotensin-Converting Enzyme 2) human receptor. Hence, spike glycoprotein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a potential target for diagnostics, vaccines, and antibodies. Also, virus entry can be prevented by blocking ACE2 thus, ACE2 can be considered potential target for therapeutics. As being highly specific, safe and efficacious, peptides hold their place in therapeutics. In present study, we retrieved sequence of 70 peptides from Antiviral Peptide Database (AVPdb), modelled them using 3D structure predicting web tool and docked them with receptor binding domain (RBD) of spike protein and human host receptor ACE2 using peptide-protein docking. It was observed that peptides have more affinity towards ACE2 in comparison with spike RBD. Interestingly it was noticed that most of the peptides bind to RBM (residue binding motif) which is responsible for ACE2 binding at the interface of RBD while, for ACE2, peptides prefer to bind the core cavity rather than RBD binding interface. To further investigate how peptides at the interface of RBD or ACE2 alter the binding between RBD and ACE2, protein-protein docking of RBD and ACE2 with and without peptides was performed. Peptides, AVP0671 at RBD and AVP1244 at ACE2 interfaces significantly reduce the binding affinity and change the orientation of RBD and ACE2 binding. This finding suggests that peptides can be used as a drug to inhibit virus entry in cells to stop COVID-19 pandemic in the future after experimental evidences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...