Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1259032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690011

RESUMO

In this study, we report the synthesis of a new cubic neodymium-rhenium metallic alloy NdRe2 through the utilization of high pressure and laser heating in a diamond anvil cell. NdRe2 crystallizes in the Fd3¯m space group with a lattice parameter equal to 7.486 (2) Å and Z = 8 at 24 (1) GPa and 2,200 (100) K. It was studied using high-pressure single-crystal X-ray diffraction. The compound crystallizes in the cubic MgCu2 structure type. Its successful synthesis further proves that high-pressure high-temperature conditions can be used to obtain alloys holding a Laves phase structure. Ab initio calculations were done to predict the mechanical properties of the material. We also discuss the usage of extreme conditions to synthesize and study materials present in the nuclear waste.

2.
Sci Rep ; 14(1): 11412, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762593

RESUMO

With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30-50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to our P-V data collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.

3.
ACS Earth Space Chem ; 8(4): 654-664, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38654897

RESUMO

Carbonates are important carbon-bearing phases in the mantle. While their role in upper mantle petrologic processes has been well studied, their effect on phase relations, melting, and transport properties in the lower mantle is less understood. The stability of carbonates in the mantle depends on a host of factors, including pressure, temperature, oxygen fugacity, and reactions with surrounding mantle phases. To understand the stability of carbonates in the presence of metal in the lower mantle, carbonate-metal reaction experiments on the Fe-Si-Ca-Mg-C-O system were conducted up to 124 GPa and 3200 K. We find that carbonates react with iron alloys to form silicates, iron carbides, and oxides. However, the temperature at which these reactions occur increases with pressure, indicating that along a geotherm in the lowermost mantle carbonates are the stable carbon-bearing phase. Carbon is found to be less siderophilic at high-pressure compared to silicon.

4.
Nat Commun ; 15(1): 2855, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565539

RESUMO

Metal carbides are known to contain small carbon units similar to those found in the molecules of methane, acetylene, and allene. However, for numerous binary systems ab initio calculations predict the formation of unusual metal carbides with exotic polycarbon units, [C6] rings, and graphitic carbon sheets at high pressure (HP). Here we report the synthesis and structural characterization of a HP-CaC2 polymorph and a Ca3C7 compound featuring deprotonated polyacene-like and para-poly(indenoindene)-like nanoribbons, respectively. We also demonstrate that carbides with infinite chains of fused [C6] rings can exist even at conditions of deep planetary interiors ( ~ 140 GPa and ~3300 K). Hydrolysis of high-pressure carbides may provide a possible abiotic route to polycyclic aromatic hydrocarbons in Universe.

5.
Nat Commun ; 15(1): 2244, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472167

RESUMO

Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc2N6, Sc2N8, ScN5, and Sc4N3, synthesized by direct reaction between yttrium and nitrogen at 78-125 GPa and 2500 K in laser-heated diamond anvil cells. High-pressure synchrotron single-crystal X-ray diffraction reveals that in the crystal structures of the nitrogen-rich Sc2N6, Sc2N8, and ScN5 phases nitrogen is catenated forming previously unknown N66- and N86- units and ∞ 2 ( N 5 3 - ) anionic corrugated 2D-polynitrogen layers consisting of fused N12 rings. Density functional theory calculations, confirming the dynamical stability of the synthesized compounds, show that Sc2N6 and Sc2N8 possess an anion-driven metallicity, while ScN5 is an indirect semiconductor. Sc2N6, Sc2N8, and ScN5 solids are promising high-energy-density materials with calculated volumetric energy density, detonation velocity, and detonation pressure higher than those of TNT.

6.
Sci Adv ; 10(11): eadl5416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478619

RESUMO

The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors-ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials.

7.
Chemistry ; : e202400536, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527310

RESUMO

In this study, we conduct extensive high-pressure experiments to investigate phase stability in the cobalt-nitrogen system. Through a combination of synthesis in a laser-heated diamond anvil cell, first-principles calculations, Raman spectroscopy, and single-crystal X-ray diffraction, we establish the stability fields of known high-pressure phases, hexagonal NiAs-type CoN, and marcasite-type CoN2 within the pressure range of 50-90 GPa. We synthesize and characterize previously unknown nitrides, Co3N2, Pnma-CoN and two polynitrides, CoN3 and CoN5, within the pressure range of 90-120 GPa. Both polynitrides exhibit novel types of polymeric nitrogen chains and networks. CoN3 feature branched-type nitrogen trimers (N3) and CoN5 show π-bonded nitrogen chain. As the nitrogen content in the cobalt nitride increases, the CoN6 polyhedral frameworks transit from face-sharing (in CoN) to edge-sharing (in CoN2 and CoN3), and finally to isolated (in CoN5). Our study provides insights into the intricate interplay between structure evolution, bonding arrangements, and high-pressure synthesis in polynitrides, expanding the knowledge for the development of advanced energy materials.

8.
Inorg Chem ; 63(11): 4875-4882, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38412505

RESUMO

The reaction between PrO2 and SiO2 was investigated at various pressure points up to 29 GPa in a diamond anvil cell using laser heating and in situ single-crystal structure analysis. The pressure points at 5 and 10 GPa produced Pr2III(Si2O7), whereas Pr4IIISi3O12 and Pr2IV(O2)O3 were obtained at 15 GPa. Pr4IIISi3O12 can be interpreted as a high-pressure modification of the still unknown orthosilicate Pr4III(SiO4)3. PrIVSi3O8 and Pr2IVSi7O18 that contain praseodymium in its rare + IV oxidation state were identified at 29 GPa. After the pressure was released from the reaction chamber, the Pr(IV) silicates could be recovered, indicating that they are metastable at ambient pressure. Density functional theory calculations of the electronic structure corroborate the oxidation state of praseodymium in both PrIVSi3O8 and Pr2IVSi7O18. Both silicates are the first structurally characterized representatives of Pr4+-containing salts with oxoanions. All three silicates contain condensed networks of [SiO6] octahedra which is unprecedented in the rich chemistry of lanthanoid silicates.

9.
J Phys Chem Lett ; 15(9): 2344-2351, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387075

RESUMO

Compression of small molecules can induce solid-state reactions that are difficult or impossible under conventional, solution-phase conditions. Of particular interest is the topochemical-like reaction of arenes to produce polymeric nanomaterials. However, high reaction onset pressures and poor selectivity remain significant challenges. Herein, the incorporation of electron-withdrawing and -donating groups into π-stacked arenes is proposed as a strategy to reduce reaction barriers to cycloaddition and onset pressures. Nevertheless, competing side-chain reactions between functional groups represent alternative viable pathways. For the case of a diaminobenzene:tetracyanobenzene cocrystal, amidine formation between amine and cyano groups occurs prior to cycloaddition with an onset pressure near 9 GPa, as determined using vibrational spectroscopy, X-ray diffraction, and first-principles calculations. This work demonstrates that reduced-barrier cycloaddition reactions are theoretically possible via strategic functionalization; however, the incorporation of pendant groups may enable alternative reaction pathways. Controlled reactions between pendant groups represent an additional strategy for producing unique polymeric nanomaterials.

10.
Adv Mater ; 36(3): e2308030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822038

RESUMO

Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3 N4 , hP126-C3 N4 , and tI24-CN2 , in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.

11.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054834

RESUMO

Externally heated diamond anvil cells provide a stable and uniform thermal environment, making them a versatile device to simultaneously generate high-pressure and high-temperature conditions in various fields of research, such as condensed matter physics, materials science, chemistry, and geosciences. The present study features the Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) system, a versatile configuration consisting of a diamond anvil cell with a customized microheater for stable resistive heating, bidirectional pressure control facilitated by compression and decompression membranes, and a water-cooled enclosure suitable for vacuum and controlled atmospheres. This integrated system excels with its precise control of both pressure and temperature for mineral and materials science research under extreme conditions. We showcase the capabilities of the system through its successful application in the investigation of the melting temperature and thermal equation of state of high-pressure ice-VII at temperatures up to 1400 K. The system was also used to measure the elastic properties of solid ice-VII and liquid H2O using Brillouin scattering and Raman spectra of carbonates using Raman spectroscopy, highlighting the potential of the EH-DANCE system in high-pressure research.

12.
Proc Natl Acad Sci U S A ; 120(52): e2309786120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109550

RESUMO

Many sub-Neptune exoplanets have been believed to be composed of a thick hydrogen-dominated atmosphere and a high-temperature heavier-element-dominant core. From an assumption that there is no chemical reaction between hydrogen and silicates/metals at the atmosphere-interior boundary, the cores of sub-Neptunes have been modeled with molten silicates and metals (magma) in previous studies. In large sub-Neptunes, pressure at the atmosphere-magma boundary can reach tens of gigapascals where hydrogen is a dense liquid. A recent experiment showed that hydrogen can induce the reduction of Fe[Formula: see text] in (Mg,Fe)O to Fe[Formula: see text] metal at the pressure-temperature conditions relevant to the atmosphere-interior boundary. However, it is unclear whether Mg, one of the abundant heavy elements in the planetary interiors, remains oxidized or can be reduced by H. Our experiments in the laser-heated diamond-anvil cell found that heating of MgO + Fe to 3,500 to 4,900 K (close to or above their melting temperatures) in an H medium leads to the formation of Mg[Formula: see text]FeH[Formula: see text] and H[Formula: see text]O at 8 to 13 GPa. At 26 to 29 GPa, the behavior of the system changes, and Mg-H in an H fluid and H[Formula: see text]O were detected with separate FeH[Formula: see text]. The observations indicate the dissociation of the Mg-O bond by H and subsequent production of hydride and water. Therefore, the atmosphere-magma interaction can lead to a fundamentally different mineralogy for sub-Neptune exoplanets compared with rocky planets. The change in the chemical reaction at the higher pressures can also affect the size demographics (i.e., "radius cliff") and the atmosphere chemistry of sub-Neptune exoplanets.

13.
Nat Commun ; 14(1): 7336, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957142

RESUMO

The high-pressure melting curve of FeO controls key aspects of Earth's deep interior and the evolution of rocky planets more broadly. However, existing melting studies on wüstite were conducted across a limited pressure range and exhibit substantial disagreement. Here we use an in-situ dual-technique approach that combines a suite of >1000 x-ray diffraction and synchrotron Mössbauer measurements to report the melting curve for Fe1-xO wüstite to pressures of Earth's lowermost mantle. We further observe features in the data suggesting an order-disorder transition in the iron defect structure several hundred kelvin below melting. This solid-solid transition, suggested by decades of ambient pressure research, is detected across the full pressure range of the study (30 to 140 GPa). At 136 GPa, our results constrain a relatively high melting temperature of 4140 ± 110 K, which falls above recent temperature estimates for Earth's present-day core-mantle boundary and supports the viability of solid FeO-rich structures at the roots of mantle plumes. The coincidence of the defect order-disorder transition with pressure-temperature conditions of Earth's mantle base raises broad questions about its possible influence on key physical properties of the region, including rheology and conductivity.

14.
Front Chem ; 11: 1259000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841208

RESUMO

The novel structure of lanthanum hydroxyborate La2B2O5(OH)2 was synthesized by the reaction of partially hydrolyzed lanthanum and boron oxide in a diamond anvil cell under high-pressure/high-temperature (HPHT) conditions of 30 GPa and ∼2,400 K. The single-crystal X-ray structure determination of the lanthanum hydroxyborate revealed: P3¯c1, a = 6.555(2) Å, c = 17.485(8) Å, Z = 6, R1 = 0.056. The three-dimensional structure consists of discrete planar BO3 groups and three crystallographically different La ions: one is surrounded by 9, one by 10, and one by 12 oxygen anions. The band gap was estimated using ab initio calculations to be 4.64 eV at ambient pressure and 5.26 eV at 30 GPa. The current work describes the novel HPHT lanthanum hydroxyborate with potential application as a deep-ultraviolet birefringent material.

15.
Nat Commun ; 14(1): 6207, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798268

RESUMO

The allotropy of solid molecular nitrogen is the consequence of a complex interplay between fundamental intermolecular as well as intramolecular interactions. Understanding the underlying physical mechanisms hinges on knowledge of the crystal structures of these molecular phases. That is especially true for ζ-N2, key to shed light on nitrogen's polymerization. Here, we perform single-crystal X-ray diffraction on laser-heated N2 samples at 54, 63, 70 and 86 GPa and solve and refine the hitherto unknown structure of ζ-N2. In its monoclinic unit cell (space group C2/c), 16 N2 molecules are arranged in a configuration similar to that of ε-N2. The structure model provides an explanation for the previously identified Raman and infrared lattice and vibrational modes of ζ-N2. Density functional theory calculations give an insight into the gradual delocalization of electronic density from intramolecular bonds to intermolecular space and suggest a possible pathway towards nitrogen's polymerization.

16.
Angew Chem Int Ed Engl ; 62(47): e202311516, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37768278

RESUMO

A series of isostructural Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25-54 GPa) high-temperature (2000-3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln3 O2 (CN3 ) solids are composed of the hitherto unknown CN3 5- guanidinate anion-deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln3 O2 (CN3 ) compounds are recoverable to ambient conditions. The stabilization of the CN3 5- guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.

18.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551808

RESUMO

We employed high-pressure Brillouin scattering to study the pressure dependencies of acoustic modes of glycerol up to 14 GPa at 300 K. We observed longitudinal acoustic velocities and transverse acoustic velocities for the first time from 5 to 14 GPa. The results allow the determination of a complete set of elastic properties and an accurate determination of the pressure-volume (P-V) equation of state (EOS). EOS parameters, K0 = 14.9 ± 1.8 GPa and K'0 = 5.6 ± 0.5, were determined from fits to the data from ambient pressure to 14 GPa. Direct volume measurements of the P-V EOS are consistent with those determined by Brillouin scattering. A deviation from a Cauchy-like relationship for elastic properties was observed, and the pressure dependencies of the photoelastic constants and relaxation times were documented from 5 to 14 GPa. These results have broad implications for glass-forming liquids, viscoelastic theory, and mode coupling theory.

19.
Inorg Chem ; 62(31): 12203-12212, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487202

RESUMO

The MSb2 compounds with M = Cr, Fe, Ru, and Os have been investigated under high pressures by synchrotron powder X-ray diffraction. All compounds, except CrSb2, were found to retain the marcasite structure up to the highest pressures (more than 50 GPa). In contrast, we found that CrSb2 has a structural phase transition around 10 GPa to a metastable, MoP2-type structure with Cr coordinated to seven Sb atoms. In addition, we compared ambient temperature compression with laser-heating experiments and found that laser-heating at pressures below and above this phase transition results in the known CuAl2-type structure. Density functional theory calculations show that this tetragonal structure is the most stable in the whole pressure interval. However, a crossing of the marcasite's and MoP2-like structure's enthalpies occurs between 5 and 7.5 GPa, which is in good agreement with the experimental data. The phase transition to the MoP2-type structure observed in this work opens up for discovering other compounds with this new transition pathway from the marcasite structure.

20.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318367

RESUMO

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Assuntos
Diamante , Lasers , Difração de Raios X , Pressão , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...