Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Occup Med Toxicol ; 16(1): 22, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167564

RESUMO

The ROBoCoP project is launched within the EU COST Action CA16113 "CliniMARK" aiming to increase the number of clinically validated biomarkers and focused on chronic obstructive pulmonary disease (COPD) biomarker development and validation. ROBoCoP encompasses two consecutive studies consisting of a pilot study followed by a field study. The pilot study is a longitudinal exposure assessment and biomarker study aiming at: 1-understanding the suitability of the candidate biomarkers in surveying populations at risk such as workers exposed to COPD causing agents; 2-determining the best sampling plan with respect to the half-life of the candidate biomarkers; 3-implementing and validating the sampling procedures and analytical methods; 4-selecting the best suitable biomarkers to be measured in the field. Each study participant is surveyed every day during the 6-8 h work-shifts for two consecutive weeks. The field study has an implementation research designe that enabled us to demonstrate the applicability of the standardized protocol for biomarker measurements in occupational settings while also assessing the biomarkers' validity. ROBoCoP will focus on particulate matter (PM) exposure measurements, exposure biomarkers and a series of effect biomarkers, including markers of lipoperoxidation: 8-isoprostane, malondialdehyd in exhaled breath condensate (EBC) and urine, potential markers of nitrosative stress: NO2-, NO3- and formate anion in EBC; markers of DNA oxidation: 8-hydroxy-2'deoxyguanosine in EBC and urine, marker of genotoxicity: micronuclei in buccal cells, and oxidative potential in exhaled air (OPEA). OPEA appears particularly promising as a clinical biomarker for detecting COPD, and will be tested independently and as part of a biomarker panel. COPD diagnosis will be performed by an experienced occupational physician according to international diagnostic standards and confirmed by a pulmonologist.This research will include approximatively 300 underground subway workers randomly selected from the personnel registry of a large Parisian transport company. Underground subways are suggested as the most PM polluted urban transport environment. We believe this occupational exposure is relevant for biomonitoring of workers and early detection of respiratory diseases.

2.
J Allergy (Cairo) ; 2012: 597306, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22548090

RESUMO

Background. More than 400 agents have been documented as causing occupational asthma (OA). The list of low-molecular-weight (LMW) agents that have been identified as potential causes of OA is constantly expanding, emphasizing the need to continually update our knowledge by reviewing the literature. Objective. The objective of this paper was to identify all new LMW agents causing occupational asthma reported during the period 2000-2010. Methods. A Medline search was performed using the keywords occupational asthma, new allergens, new causes, and low-molecular-weight agents. Results. We found 39 publications describing 41 new LMW causal agents, which belonged to the following categories: drugs (n = 12), wood dust (n = 11), chemicals (n = 8), metals (n = 4), biocides (n = 3), and miscellaneous (n = 3). The diagnosis of OA was confirmed through SIC for 35 of 41 agents, peak expiratory flow monitoring for three (3) agents, and the clinical history alone for three (3) agents. Immunological tests provided evidence supporting an IgE-mediated mechanism for eight (8) (20%) of the newly described agents. Conclusion. This paper highlights the importance of being alert to the occurrence of new LMW sensitizers, which can elicit OA. The immunological mechanism is explained by a type I hypersensitivity reaction in 20% of all newly described LMW agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...