Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 76: 103365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422816

RESUMO

Argininosuccinic aciduria (ASA) is a rare inherited metabolic disease caused by argininosuccinate lyase (ASL) deficiency. Patients with ASA present with hyperammonaemia due to an impaired urea cycle pathway in the liver, and systemic disease with epileptic encephalopathy, chronic liver disease, and arterial hypertension. A human induced pluripotent stem cell (iPSC) line from the fibroblasts of a patient with ASA with homozygous pathogenic c.437G > A mutation of hASL was generated. Characterization of the cell line demonstrated pluripotency, differentiation potential and normal karyotype. This cell line, called UCLi024-A, can be utilized for in vitro disease modelling of ASA, and design of novel therapeutics.


Assuntos
Acidúria Argininossuccínica , Células-Tronco Pluripotentes Induzidas , Humanos , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/metabolismo , Acidúria Argininossuccínica/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Argininossuccinato Liase/genética , Mutação/genética , Homozigoto
2.
Stem Cell Reports ; 17(11): 2421-2437, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36240775

RESUMO

Usher syndrome-associated retinitis pigmentosa (RP) causes progressive retinal degeneration, which has no cure. The pathomechanism of Usher type 1B (USH1B)-RP caused by MYO7A mutation remains elusive because of the lack of faithful animal models and limited knowledge of MYO7A function. Here, we analyzed 3D retinal organoids generated from USH1B patient-derived induced pluripotent stem cells. Increased differential gene expression occurred over time without excessive photoreceptor cell death in USH1B organoids compared with controls. Dysregulated genes were enriched first for mitochondrial functions and then proteasomal ubiquitin-dependent protein catabolic processes and RNA splicing. Single-cell RNA sequencing revealed MYO7A expression in rod photoreceptor and Müller glial cells corresponding to upregulation of stress responses in NRL+ rods and apoptotic signaling pathways in VIM+ Müller cells, pointing to the defensive mechanisms that mitigate photoreceptor cell death. This first human model for USH1B-RP provides a representation of patient retina in vivo relevant for development of therapeutic strategies.


Assuntos
Organoides , Retinose Pigmentar , Animais , Humanos , Miosina VIIa , Organoides/patologia , Patologia Molecular , Miosinas/genética , Miosinas/metabolismo , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia
3.
Sci Rep ; 12(1): 6646, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459774

RESUMO

Retinal degenerative diseases are a leading cause of blindness worldwide with debilitating life-long consequences for the affected individuals. Cell therapy is considered a potential future clinical intervention to restore and preserve sight by replacing lost photoreceptors and/or retinal pigment epithelium. Development of protocols to generate retinal tissue from human pluripotent stem cells (hPSC), reliably and at scale, can provide a platform to generate photoreceptors for cell therapy and to model retinal disease in vitro. Here, we describe an improved differentiation platform to generate retinal organoids from hPSC at scale and free from time-consuming manual microdissection steps. The scale up was achieved using an agarose mould platform enabling generation of uniform self-assembled 3D spheres from dissociated hPSC in microwells. Subsequent retinal differentiation was efficiently achieved via a stepwise differentiation protocol using a number of small molecules. To facilitate clinical translation, xeno-free approaches were developed by substituting Matrigel™ and foetal bovine serum with recombinant laminin and human platelet lysate, respectively. Generated retinal organoids exhibited important features reminiscent of retinal tissue including correct site-specific localisation of proteins involved in phototransduction.


Assuntos
Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Organoides , Retina , Epitélio Pigmentado da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...