Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; : 5586-5593, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754086

RESUMO

Herein, MoS2 quantum dots (QDs) with controlled optical, structural, and electronic properties are synthesized using the femtosecond pulsed laser ablation in liquid (fs-PLAL) technique by varying the pulse width, ablation power, and ablation time to harness the potential for next-generation optoelectronics and quantum technology. Furthermore, this work elucidates key aspects of the mechanisms underlying the near-UV and blue emissions the accompanying large Stokes shift, and the consequent change in sample color with laser exposure parameters pertaining to MoS2 QDs. Through spectroscopic analysis, including UV-visible absorption, photoluminescence, and Raman spectroscopy, we successfully unraveled the mechanisms for the change in optoelectronic properties of MoS2 QDs with laser parameters. We realize that the occurrence of a secondary phase, specifically MoO3-x, is responsible for the significant Stokes shift and blue emission observed in this QD system. The primary factor influencing these activities is the electron transfer observed between these two phases, as validated by excitation-dependent photoluminescence and XPS and Raman spectroscopies.

2.
Dalton Trans ; 53(7): 3280-3289, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38258579

RESUMO

Advances in the hydrogen evolution reaction (HER) are intricately connected with addressing the current energy crisis and quest for sustainable energy sources. The necessity of catalysts that are efficient and inexpensive to perform the hydrogen evolution reaction is key to this. Following the ground-breaking discovery of graphene, metal thio/seleno phosphates (MPX3: M - transition metal, P - phosphorus and X - S/Se), two dimensional (2D) materials, exhibit excellent tunable physicochemical, electronic and optical properties, and are expected to be key to the energy industry for years to come. Taking this into account, a facile time-effective electrostatic restacking synthesis procedure has been followed to synthesize a 2D/2D heterostructure (FePS3@BCN) involving FePS3, one of the prominent MPX3 materials, with borocarbonitride (BCN), for hydrogen evolution reaction (HER). The piled up nanosheets of FePS3 and BCN are held together by an electrostatic force, and display extreme robustness under the harsh conditions of HER application. The amalgamated electrocatalyst achieved an overpotential of 187 mV at a current density of 10 mA cm-2 with a shallow Tafel slope of 41 mV dec-1, following the Volmer-Heyrovsky mechanism. The resilience of the electrocatalyst has been examined through chronoamperometric testing for long term stability, and it is stable for more than 14 hours, which shows the excellent electrocatalytic activity for hydrogen evolution reaction owing to the strategic approach to the catalyst design, the use of numerous electrochemically active sites, large surface area and a barrier-free channel for quick ion transfer.

3.
Nanoscale ; 15(29): 12358-12365, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37449882

RESUMO

Mono-layer transition metal dichalcogenides (TMDCs) have emerged as an ideal platform for the study of many-body physics. As a result of their low dimensionality, these materials show a strong Coulomb interaction primarily due to reduced dielectric screening that leads to the formation of stable excitons (bound electron-hole pairs) and higher order excitons, including trions, and bi-excitons even at room temperature. van der Waals (vdW) heterostructures (HSs) of TMDCs provide an additional degree of freedom for altering the properties of 2D materials because charge carriers (electrons) in the different atomically thin layers are exposed to interlayer coupling and charge transfer takes place between the layers of vdW HSs. Astoundingly, it leads to the formation of different types of quasi-particles. In the present work, we report the synthesis of vdW HSs, i.e., α-MoO3/MoS2, on a 300 nm SiO2/Si substrate and investigate their temperature-dependent photoluminescence (PL) spectra. Interestingly, an additional PL peak is observed in the case of the HS, along with A and B excitonic peaks. The emergence of a new PL peak in the low-energy regime has been assigned to the formation of a positive trion. The formation of positive trions in the HS is due to the high work function of α-MoO3, which enables the spontaneous transit of electrons from MoS2 to α-MoO3 and injection of holes into the MoS2 layer. In order to confirm charge transfer in the α-MoO3/MoS2 HS, systematic power and wavelength-dependent Raman and PL studies, as well as first-principle calculations using Bader charge analysis, have been carried out, which clearly validate our mechanism. We believe that this study will provide a platform towards the integration of vdW HSs for next-generation excitonic devices.

4.
RSC Adv ; 13(24): 16241-16247, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37266495

RESUMO

In this communication, we demonstrate uniaxial strain relaxation in monolayer (1L) MoS2 transpires through cracks in both single and double-grain flakes. Chemical vapour deposition (CVD) grown 1L MoS2 has been transferred onto polyethylene terephthalate (PET) and poly(dimethylsiloxane) (PDMS) substrates for low (∼1%) and high (1-6%) strain measurements. Both Raman and photoluminescence (PL) spectroscopy revealed strain relaxation via cracks in the strain regime of 4-6%. In situ optical micrographs show the formation of large micron-scale cracks along the strain axis and ex situ atomic force microscopy (AFM) images reveal the formation of smaller lateral cracks due to the strain relaxation. Finite element simulation has been employed to estimate the applied strain efficiency as well as to simulate the strain distribution for MoS2 flakes. The present study reveals the uniaxial strain relaxation mechanism in 1L MoS2 and paves the way for exploring strain relaxation in other transition metal dichalcogenides (TMDCs) as well as their heterostructures.

5.
Chemphyschem ; 24(7): e202200598, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510477

RESUMO

The osmotic energy from a salinity gradient (i. e. blue energy) is identified as a promising non-intermittent renewable energy source for a sustainable technology. However, this membrane-based technology is facing major limitations for large-scale viability, primarily due to the poor membrane performance. An atomically thin 2D nanoporous material with high surface charge density resolves the bottleneck and leads to a new class of membrane material the salinity gradient energy. Although 2D nanoporous membranes show extremely high performance in terms of energy generation through the single pore, the fabrication and technical challenges such as ion concentration polarization make the nanoporous membrane a non-viable solution. On the other hand, the mesoporous and micro porous structures in the 2D membrane result in improved energy generation with very low fabrication complexity. In the present work, we report femtosecond (fs) laser-assisted scalable fabrication of µm to mm size pores on Graphene membrane for blue energy generation for the first time. A remarkable osmotic power in the order of µW has been achieved using mm size pores, which is about six orders of magnitudes higher compared to nanoporous membranes, which is mainly due to the diffusion-osmosis driven large ionic flux. Our work paves the way towards fs laser-assisted scalable pore creation in the 2D membrane for large-scale osmotic power generation.

6.
ACS Nano ; 16(12): 21366-21376, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36468945

RESUMO

Synthesizing a material with the desired polymorphic phase in a chemical vapor deposition (CVD) process requires a delicate balance among various thermodynamic variables. Here, we present a methodology to synthesize rhombohedral (3R)-phase MoS2 in a well-defined sword-like geometry having lengths up to 120 µm, uniform width of 2-3 µm and thickness of 3-7 nm by controlling the carrier gas flow dynamics from continuous mode to pulsed mode during the CVD growth process. Characteristic signatures such as high degree of circular dichroism (∼58% at 100 K), distinct evolution of low-frequency Raman peaks and increasing intensity of second harmonic signals with increasing number of layers conclusively establish the 3R-phase of the material. A high value (∼844 pm/V) of second-order susceptibility for few-layer-thick MoS2 swords signifies the potential of MoS2 to serve as an atomically thin nonlinear medium. A field effect mobility of 40 cm2/V-s and Ion/Ioff ratio of ∼106 further confirm the electronic-grade standard of this 3R-phase MoS2. These findings are significant for the development of emerging quantum electronic devices utilizing valley-based physics and nonlinear optical phenomena in layered materials.

7.
Nanoscale Adv ; 4(23): 5123-5131, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36504743

RESUMO

Negative differential resistance (NDR) is one of the nonlinear transport phenomena in which ionic current decreases with the increase in electromotive potential. Electro-osmosis, diffusio-osmosis, and surface charge density of pores are the driving forces for observing NDR in nanoscale ion transport. Here, we report electrodiffusioosmosis induced NDR using micro to millimeter size pores in a two-dimensional (2D) graphene-coated copper (Gr/Cu) membrane. Along with NDR, we also observed ion current rectification (ICR), in which there is preferential one-directional ion flow for equal and opposite potentials. The experimentally observed NDR effect has been validated by performing ion transport simulations using Poisson-Nernst-Planck (PNP) equations and Navier-Stokes equations with the help of COMSOL Multiphysics considering salinity gradient across the membrane. Charge polarization induced electro-osmotic flow (EOF) dominates over diffusio-osmosis, causing the backflow of low concentration/conductivity solution into the pore, thereby causing NDR. This finding paves the way toward potential applications in ionic tunnel diodes as rectifiers, switches, amplifiers, and biosensors.

8.
Rev Sci Instrum ; 93(6): 064104, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778037

RESUMO

The ion transport measurements using various ion-exchange membranes (IEMs) face several challenges, including controllability, reproducibility, reliability, and accuracy. This is due to the manual filling of the solutions in two different reservoirs in a typical diffusion cell experiment with a random flow rate, which results in the diffusion through the IEM even before turning on the data acquisition system as reported so far. Here, we report the design and development of an automated experimental setup for ion transport measurements using IEMs. The experimental setup has been calibrated and validated by performing ion transport measurements using a standard nanoporous polycarbonate membrane. We hope that the present work will provide a standard tool for realizing reliable ion transport measurements using ion-exchange membranes and can be extended to study other membranes of various pore densities, shapes, and sizes.


Assuntos
Membranas Artificiais , Difusão , Troca Iônica , Transporte de Íons , Reprodutibilidade dos Testes
9.
Nanoscale ; 14(14): 5289-5313, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322836

RESUMO

Light plays an essential role in our world, with several technologies relying on it. Photons will also play an important role in the emerging quantum technologies, which are primed to have a transformative effect on our society. The development of single-photon sources and ultra-sensitive photon detectors is crucial. Solid-state emitters are being heavily pursued for developing truly single-photon sources for scalable technology. On the detectors' side, the main challenge lies in inventing sensitive detectors operating at sub-optical frequencies. This review highlights the promising research being conducted for the development of quantum emitters and detectors based on two-dimensional van der Waals (2D-vdW) materials. Several 2D-vdW materials, from canonical graphene to transition metal dichalcogenides and their heterostructures, have generated a lot of excitement due to their tunable emission and detection properties. The recent developments in the creation, fabrication and control of quantum emitters hosted by 2D-vdW materials and their potential applications in integrated photonic devices are discussed. Furthermore, the progress in enhancing the photon-counting potential of 2D material-based detectors, viz. 2D photodetectors, bolometers and superconducting single-photon detectors functioning at various wavelengths is also reported.

10.
ACS Omega ; 7(7): 6412-6418, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224402

RESUMO

Monolayer (ML) transition metal dichalcogenides (TMDCs) have been rigorously studied to comprehend their rich spin and valley physics, exceptional optical properties, and ability to open new avenues in fundamental research and technology. However, intricate analysis of twisted homobilayer (t-BL) systems is highly required due to the intriguing twist angle (t-angle)-dependent interlayer effects on optical and electrical properties. Here, we report the evolution of the interlayer effect on artificially stacked BL WSe2, grown using chemical vapor deposition (CVD), with t-angle in the range of 0 ≤ θ ≤ 60°. Systematic analyses based on Raman and photoluminescence (PL) spectroscopies suggest intriguing deviations in the interlayer interactions, higher-energy exciton transitions (in the range of ∼1.6-1.7 eV), and stacking. In contrast to previous observations, we demonstrate a red shift in the PL spectra with t-angle. Density functional theory (DFT) is employed to understand the band-gap variations with t-angle. Exciton radiative lifetime has been estimated theoretically using temperature-dependent PL measurements, which shows an increase with t-angle that agrees with our experimental observations. This study presents the groundwork for further investigation of the evolution of various interlayer excitons and their dynamics with t-angle in homobilayer systems, critical for optoelectronic applications.

11.
Nanoscale Res Lett ; 16(1): 22, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33537903

RESUMO

Discovery of two-dimensional (2D) topological insulators (TIs) demonstrates tremendous potential in the field of thermoelectric since the last decade. Here, we have synthesized 2D TI, Sb2Te3 of various thicknesses in the range 65-400 nm using mechanical exfoliation and studied temperature coefficient in the range 100-300 K using micro-Raman spectroscopy. The temperature dependence of the peak position and line width of phonon modes have been analyzed to determine the temperature coefficient, which is found to be in the order of 10-2 cm-1/K, and it decreases with a decrease in Sb2Te3 thickness. Such low-temperature coefficient would favor to achieve a high figure of merit (ZT) and pave the way to use this material as an excellent candidate for thermoelectric materials. We have estimated the thermal conductivity of Sb2Te3 flake with the thickness of 115 nm supported on 300-nm SiO2/Si substrate which is found to be ~ 10 W/m-K. The slightly higher thermal conductivity value suggests that the supporting substrate significantly affects the heat dissipation of the Sb2Te3 flake.

12.
Chemistry ; 26(29): 6499-6503, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32162366

RESUMO

The recently discovered twisted graphene has attracted considerable interest. A simple chemical route was found to prepare twisted graphene by covalently linking layers of exfoliated graphene containing surface carboxyl groups with an amine-containing linker (trans-1,4-diaminocyclohexane). The twisted graphene shows the expected selected area electron diffraction pattern with sets of diffraction spots out with different angular spacings, unlike graphene, which shows a hexagonal pattern. Twisted multilayer graphene oxide could be prepared by the above procedure. Twisted boron nitride, prepared by cross-linking layers of boron nitride (BN) containing surface amino groups with oxalic acid linker, exhibited a diffraction pattern comparable to that of twisted graphene. First-principles DFT calculations threw light on the structures and the nature of interactions associated with twisted graphene/BN obtained by covalent linking of layers.

14.
ACS Appl Mater Interfaces ; 11(31): 27780-27787, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31266296

RESUMO

Hydrogen production by photochemical and electrochemical means is an important area of research related to renewable energy. 2D nanomaterials such as C3N4 and MoS2 have proven to be active for the hydrogen evolution reaction (HER). Phosphorene, a mono-elemental 2D layer of phosphorus, is known to catalyze the HER, but the activity is marginal. The use of phosphorene is also limited by its ambient instability. We have been able to prepare covalently cross-linked nanocomposites of phosphorene with MoS2 as well as MoSe2. The phosphorene-MoS2 nanocomposite shows excellent photochemical HER activity yielding 26.8 mmol h-1 g-1 of H2, while only a negligible amount is produced by the physical mixture of phosphorene and MoS2. The phosphorene-MoS2 composite also displays high electrochemical HER activity with an onset overpotential of 110 mV, close to that of Pt. The enhanced HER activity of the phosphorene-MoS2 nanocomposite can be attributed to the ordered cross-linking of the 2D sheets, increasing the interfacial area as well as the charge-transfer interaction between phosphorene and MoS2 layers. The phosphorene-MoSe2 nanocomposite also exhibits good photochemical HER activity.

15.
Nanoscale Res Lett ; 14(1): 107, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903401

RESUMO

Synthesis of high-quality graphene layers on insulating substrates is highly desirable for future graphene-based high-speed electronics. Besides the use of gaseous hydrocarbon sources, solid and liquid hydrocarbon sources have recently shown great promises for high-quality graphene growth. Here, I report chemical vapor deposition growth of mono- to few-layer graphene directly on SiO2 substrate using ethanol as liquid hydrocarbon feedstock. The growth process of graphene has been systematically investigated as a function of annealing temperature as well as different seed layers. Interestingly, it was found that the carbon atoms produced by thermal decomposition of ethanol form sp2 carbon network on SiO2 surface thereby forming nanographene flakes via an intermediate carbon-based nanostructured state carbon nanotube. This work might pave the way to an understanding for economical and catalyst-free graphene growth compatible with current silicon-processing techniques, and it can be applied on a variety of insulating surfaces including quartz, sapphire, and fused silica.

16.
Nature ; 567(7746): 81-86, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842637

RESUMO

Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moiré superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moiré superlattice can lead to the observation of electronic minibands5-7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor-insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moiré superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moiré pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9.

17.
Nanoscale Adv ; 1(3): 1215-1223, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133212

RESUMO

In the race to find novel transparent conductors for next-generation optoelectronic devices, graphene is supposed to be one of the leading candidates, as it has the potential to satisfy all future requirements. However, the use of graphene as a truly transparent conductor remains a great challenge because its lowest sheet resistance demonstrated so far exceeds that of the commercially available indium tin oxide. The possible cause of low conductivity lies in its intrinsic growth process, which requires further exploration. In this work, I have approached this problem by controlling graphene nucleation during the chemical vapor deposition process as well as by adopting three distinct procedures, including bis(trifluoromethanesulfonyl)amide doping, post annealing, and flattening of graphene films. Additionally, van der Waals stacked graphene layers have been prepared to reduce the sheet resistance effectively. I have demonstrated an efficient and flexible transparent conductor with the extremely low sheet resistance of 40 Ω sq-1, high transparency (T r ∼90%), and high mechanical flexibility, making it suitable for electrode materials in future optoelectronic devices.

18.
ACS Omega ; 3(10): 14097-14102, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458102

RESUMO

We demonstrated room temperature near infrared (NIR) region random lasing (RL) (800-950 nm), with a threshold of nearly 500 µW, in ∼200 nm thick MoS2/Au nanoparticles (NPs)/ZnO heterostructures using photoluminescence spectroscopy. The RL in the above system arises mainly due to the following three reasons: (1) enhanced multiple scattering because of Au/ZnO disordered structure, (2) exciton-plasmon coupling because of Au NPs, and (3) enhanced charge transfer from ZnO to thick MoS2 flakes. RL has recently attracted tremendous interest because of its wide applications in the field of telecommunication, spectroscopy, and specifically in biomedical tissue imaging. This work provides new dimensions toward realization of low power on-chip NIR random lasers made up of biocompatible materials.

19.
RSC Adv ; 8(31): 17237-17253, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35539267

RESUMO

Covalent cross-linking of 2D structures such as graphene, MoS2 and C3N4 using coupling reactions affords the generation of novel materials with new or improved properties. These covalently cross-linked structures provide the counter point to the van der Waals heterostructures, with an entirely different set of features and potential applications. In this article, we describe the materials obtained by bonding borocarbonitride (BCN) layers with BCN layers as well as with other layered structures such as MoS2 and C3N4. While cross-linking BCN layers with other 2D sheets, we have exploited the existence of different surface functional groups on the graphene (COOH) and BN(NH2) domains of the borocarbonitrides as quantitatively determined by FLOSS. Hence, we have thus obtained two different BCN-BCN assemblies differing in the location of the cross-linking and these are designated as GG/BCN-BCN and GBN/BCN-BCN, depending on which domains of the BCN are involved in cross-linking. In this study, we have determined the surface areas and CO2 and H2 adsorption properties of the cross-linked structures of two borocarbonitride compositions, (BN)0.75C0.25 and (BN)0.3C0.7. We have also studied their supercapacitor characteristics and photochemical catalytic activity for hydrogen generation. The study reveals that the covalently cross-linked BCN-BCN and BCN-MoS2 assemblies exhibit increased surface areas and superior supercapacitor performance. The BCN composite with MoS2 also shows high photochemical HER activity besides electrochemical HER activity comparable to Pt. This observation is significant since MoS2 in the nanocomposite is in the 2H form. The present study demonstrates the novelty of this new class of materials generated by cross-linking of 2D sheets of inorganic graphene analogues and their potential applications.

20.
Chem Commun (Camb) ; 53(73): 10093-10107, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28795703

RESUMO

Covalent linking of 2D structures such as graphene, MoS2 and C3N4 by employing coupling reactions provides a strategy to generate a variety of materials with new or improved properties. These materials in a way provide the counter point based on covalent bonds to the van der Waals heterostructures. In this article, we describe materials obtained by linking graphene, MoS2 and BN with other layered structures and also with one-dimensional nanotubes and zero-dimensional MOFs and MOPs. Novel properties of the materials relate not only to porosity, surface area and gas adsorption, but also to supercapacitor characterstics, mechanical properties and the hydrogen evolution reaction. It should be possible to discover many more interesting structures and materials by employing the cross-linking strategy described here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...