Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(741): eadl2055, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569014

RESUMO

No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Animais , Anticorpos Monoclonais , Bangladesh , Chlorocebus aethiops , Glicoproteínas/metabolismo , Infecções por Henipavirus/prevenção & controle , Primatas , Ensaios Clínicos Fase I como Assunto
2.
Science ; 383(6688): eadk6176, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484056

RESUMO

Obeldesivir (ODV, GS-5245) is an orally administered prodrug of the parent nucleoside of remdesivir (RDV) and is presently in phase 3 trials for COVID-19 treatment. In this work, we show that ODV and its circulating parent nucleoside metabolite, GS-441524, have similar in vitro antiviral activity against filoviruses, including Marburg virus, Ebola virus, and Sudan virus (SUDV). We also report that once-daily oral ODV treatment of cynomolgus monkeys for 10 days beginning 24 hours after SUDV exposure confers 100% protection against lethal infection. Transcriptomics data show that ODV treatment delayed the onset of inflammation and correlated with antigen presentation and lymphocyte activation. Our results offer promise for the further development of ODV to control outbreaks of filovirus disease more rapidly.


Assuntos
Alanina , Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Nucleosídeos , Pró-Fármacos , Animais , Administração Oral , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Macaca fascicularis , Nucleosídeos/administração & dosagem , Nucleosídeos/farmacologia , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/farmacologia , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/farmacologia , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Antivirais/administração & dosagem , Antivirais/farmacologia
4.
Cell Rep Med ; 5(2): 101392, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280377

RESUMO

Lassa fever (LF) is an acute viral illness that causes thousands of deaths annually in West Africa. There are currently no Lassa virus (LASV) vaccines or antivirals approved for human use. Recently, we showed that combinations of broadly neutralizing human monoclonal antibodies (BNhuMAbs) known as Arevirumab-2 or Arevirumab-3 protected up to 100% of cynomolgus macaques against challenge with diverse lineages of LASV when treatment was initiated at advanced stages of disease. This previous work assessed efficacy against parenteral exposure. However, transmission of LASV to humans occurs primarily by mucosal exposure to virus shed from Mastomys rodents. Here, we describe the development of a lethal intranasal exposure macaque model of LF. This model is employed to show that Arevirumab cocktails rescue 100% of macaques from lethal LASV infection when treatment is initiated 8 days after LASV exposure. Our work demonstrates BNhuMAbs have utility in treating LASV infection acquired through mucosal exposure.


Assuntos
Febre Lassa , Vírus Lassa , Animais , Humanos , Febre Lassa/tratamento farmacológico , Febre Lassa/prevenção & controle , Macaca fascicularis , Imunoterapia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
5.
Emerg Microbes Infect ; 13(1): 2301061, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164768

RESUMO

Lassa virus (LASV) is a World Health Organization (WHO) priority pathogen that causes high morbidity and mortality. Recently, we showed that a combination of three broadly neutralizing human monoclonal antibodies known as Arevirumab-3 (8.9F, 12.1F, 37.2D) based on the lineage IV Josiah strain protected 100% of cynomolgus macaques against heterologous challenge with lineage II and III strains of LASV when therapy was initiated beginning at day 8 after challenge. LASV strains from Benin and Togo represent a new lineage VII that are more genetically diverse from lineage IV than strains from lineages II and III. Here, we tested the ability of Arevirumab-3 to protect macaques against a LASV lineage VII Togo isolate when treatment was administered beginning 8 days after exposure. Unexpectedly, only 40% of treated animals survived challenge. In a subsequent study we showed that Arevirumab-3 protected 100% of macaques from lethal challenge when treatment was initiated 7 days after LASV Togo exposure. Based on our transcriptomics data, successful Arevirumab-3 treatment correlated with diminished neutrophil signatures and the predicted development of T cell responses. As the in vitro antiviral activity of Arevirumab-3 against LASV Togo was equivalent to lineage II and III strains, the reduced protection in macaques against Togo likely reflects the faster disease course of LASV Togo in macaques than other strains. This data causes concern regarding the ability of heterologous vaccines and treatments to provide cross protection against lineage VII LASV isolates.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Animais , Virulência , Macaca fascicularis , Anticorpos Monoclonais/farmacologia
6.
Pathogens ; 12(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38133292

RESUMO

As part of the non-clinical safety package characterizing bamlanivimab (SARS-CoV-2 neutralizing monoclonal antibody), the risk profile for antibody-dependent enhancement of infection (ADE) was evaluated in vitro and in an African green monkey (AGM) model of COVID-19. In vitro ADE assays in primary human macrophage, Raji, or THP-1 cells were used to evaluate enhancement of viral infection. Bamlanivimab binding to C1q, FcR, and cell-based effector activity was also assessed. In AGMs, the impact of bamlanivimab pretreatment on viral loads and clinical and histological pathology was assessed to evaluate enhanced SARS-CoV-2 replication or pathology. Bamlanivimab did not increase viral replication in vitro, despite a demonstrated effector function. In vivo, no significant differences were found among the AGM groups for weight, temperature, or food intake. Treatment with bamlanivimab reduced viral loads in nasal and oral swabs and BAL fluid relative to control groups. Viral antigen was not detected in lung tissue from animals treated with the highest dose of bamlanivimab. Bamlanivimab did not induce ADE of SARS-CoV-2 infection in vitro or in an AGM model of infection at any dose evaluated. The findings suggest that high-affinity monoclonal antibodies pose a low risk of mediating ADE in patients and support their safety profile as a treatment of COVID-19 disease.

7.
Quant Plant Biol ; 4: e7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529296

RESUMO

Pollen grains represent the male gametes of seed plants and their viability is critical for sexual reproduction in the plant life cycle. Palynology and viability studies have traditionally been used to address a range of botanical, ecological and geological questions, but recent work has revealed the importance of pollen viability in invasion biology as well. Here, we report an efficient visual method for assessing the viability of pollen using digital holographic microscopy (DHM). Imaging data reveal that quantitative phase information provided by the technique can be correlated with viability as indicated by the outcome of the colorimetric test. We successfully test this method on pollen grains of Lantana camara, a well-known alien invasive plant in the tropical world. Our results show that pollen viability may be assessed accurately without the usual staining procedure and suggest potential applications of the DHM methodology to a number of emerging areas in plant science.

8.
Proc Natl Acad Sci U S A ; 120(34): e2304876120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590417

RESUMO

There are no approved treatments for Lassa fever (LF), which is responsible for thousands of deaths each year in West Africa. A major challenge in developing effective medical countermeasures against LF is the high diversity of circulating Lassa virus (LASV) strains with four recognized lineages and four proposed lineages. The recent resurgence of LASV in Nigeria caused by genetically distinct strains underscores this concern. Two LASV lineages (II and III) are dominant in Nigeria. Here, we show that combinations of two or three pan-lineage neutralizing human monoclonal antibodies (8.9F, 12.1F, 37.D) known as Arevirumab-2 or Arevirumab-3 can protect up to 100% of cynomolgus macaques against challenge with both lineage II and III LASV isolates when treatment is initiated at advanced stages of disease on day 8 after LASV exposure. This work demonstrates that it may be possible to develop postexposure interventions that can broadly protect against most strains of LASV.


Assuntos
Febre Lassa , Vírus Lassa , Animais , Humanos , Febre Lassa/prevenção & controle , África Ocidental , Anticorpos Monoclonais , Anticorpos Neutralizantes , Macaca fascicularis
9.
Front Immunol ; 14: 1200939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520526

RESUMO

Introduction: The recent discovery of TAK981(Subasumstat), the first-in-class selective inhibitor of SUMOylation, enables new immune treatments. TAK981 is already in clinical trials to potentiate immunotherapy in metastatic tumors and hematologic malignancies. Cancer patients have more than ten times higher risk of infections, but the effects of TAK981 in sepsis are unknown and previous studies on SUMO in infections are conflicting. Methods: We used TAK981 in two sepsis models; polymicrobial peritonitis (CLP) and LPS endotoxemia. Splenectomy was done in both models to study the role of spleen. Western blotting of SUMO-conjugated proteins in spleen lysates was done. Global SUMO1 and SUMO3 knockout mice were used to study the specific SUMO regulation of inflammation in LPS endotoxemia. Splenocytes adoptive transfer was done from SUMO knockouts to wild type mice to study the role of spleen SUMOylation in experimental sepsis. Results and discussion: Here, we report that inhibition of SUMOylation with TAK981 improved survival in mild polymicrobial peritonitis by enhancing innate immune responses and peritoneal bacterial clearance. Thus, we focused on the effects of TAK981 on the immune responses to bacterial endotoxin, showing that TAK981 enhanced early TNFα production but did not affect the resolution of inflammation. Splenectomy decreased serum TNFα levels by nearly 60% and TAK981-induced TNFα responses. In the spleen, endotoxemia induced a distinct temporal and substrate specificity for SUMO1 and SUMO2/3, and both were inhibited by TAK981. Global genetic depletion of SUMO1, but not SUMO3, enhanced TNFα production and metabolic acidosis. The transfer of SUMO1-null, but not wild-type, splenocytes into splenectomized wild-type mice exacerbated TNFα production and metabolic acidosis in endotoxemia. Conclusion: These results suggest that specific regulation of splenic SUMO1 can modulate immune and metabolic responses to bacterial infection.


Assuntos
Endotoxemia , Peritonite , Proteína SUMO-1 , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Camundongos Knockout , Peritonite/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Baço/metabolismo , Fator de Necrose Tumoral alfa , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo
10.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37474248

RESUMO

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Anticorpos Monoclonais , Primatas , Aerossóis
11.
J Infect Dis ; 228(Suppl 7): S571-S581, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37348509

RESUMO

BACKGROUND: The primary route of infection by Ebola virus (EBOV) is through contact of mucosal surfaces. Few studies have explored infection of nonhuman primates (NHPs) via the oral mucosa, which is a probable portal of natural infection in humans. METHODS: To further characterize the pathogenesis of EBOV infection via the oral exposure route, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona. RESULTS: Infection with 100 or 50 PFU of EBOV Makona via the oral route resulted in 50% and 83% lethality, respectively. Animals that progressed to fatal disease exhibited lymphopenia, marked coagulopathy, high viral loads, and increased levels of serum markers of inflammation and hepatic/renal injury. Survival in these cohorts was associated with milder fluctuations in leukocyte populations, lack of coagulopathy, and reduced or absent serum markers of inflammation and/or hepatic/renal function. Surprisingly, 2 surviving animals from the 100- and 50-PFU cohorts developed transient low-level viremia in the absence of other clinical signs of disease. Conversely, all animals in the 10 PFU cohort remained disease free and survived to the study end point. CONCLUSIONS: Our observations highlight the susceptibility of NHPs, and by extension, likely humans, to relatively low doses of EBOV via the oral route.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Modelos Animais de Doenças , Viremia , Macaca fascicularis , Biomarcadores
12.
J Infect Dis ; 228(Suppl 7): S604-S616, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37145930

RESUMO

BACKGROUND: Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs. METHODS: To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures. RESULTS: Despite using challenge doses orders of magnitude lower than previous studies, infection via this route was uniformly lethal across all cohorts. Time to death was delayed in a dose-dependent manner between aerosol-challenged cohorts, as well as in comparison to animals challenged via the intramuscular route. Here, we describe the observed clinical and pathological details including serum biomarkers, viral burden, and histopathological changes leading to death. CONCLUSIONS: Our observations in this model highlight the striking susceptibility of NHPs, and likely humans, via small-particle aerosol exposure to EBOV and emphasize the need for further development of diagnostics and postexposure prophylactics in the event of intentional release via deployment of an aerosol-producing device.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Macaca fascicularis , Aerossóis , Carga Viral
13.
J Infect Dis ; 228(Suppl 7): S660-S670, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37171813

RESUMO

BACKGROUND: The family Filoviridae consists of several virus members known to cause significant mortality and disease in humans. Among these, Ebola virus (EBOV), Marburg virus (MARV), Sudan virus (SUDV), and Bundibugyo virus (BDBV) are considered the deadliest. The vaccine, Ervebo, was shown to rapidly protect humans against Ebola disease, but is indicated only for EBOV infections with limited cross-protection against other filoviruses. Whether multivalent formulations of similar recombinant vesicular stomatitis virus (rVSV)-based vaccines could likewise confer rapid protection is unclear. METHODS: Here, we tested the ability of an attenuated, quadrivalent panfilovirus VesiculoVax vaccine (rVSV-Filo) to elicit fast-acting protection against MARV, EBOV, SUDV, and BDBV. Groups of cynomolgus monkeys were vaccinated 7 days before exposure to each of the 4 viral pathogens. All subjects (100%) immunized 1 week earlier survived MARV, SUDV, and BDBV challenge; 80% survived EBOV challenge. Survival correlated with lower viral load, higher glycoprotein-specific immunoglobulin G titers, and the expression of B-cell-, cytotoxic cell-, and antigen presentation-associated transcripts. CONCLUSIONS: These results demonstrate multivalent VesiculoVax vaccines are suitable for filovirus outbreak management. The highly attenuated nature of the rVSV-Filo vaccine may be preferable to the Ervebo "delta G" platform, which induced adverse events in a subset of recipients.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Vacinas Virais , Humanos , Animais , Vacinas Atenuadas , Macaca fascicularis , Vesiculovirus/genética , Vírus da Estomatite Vesicular Indiana , Anticorpos Antivirais
14.
Curr Probl Cardiol ; 48(10): 101814, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37209804

RESUMO

Twelve CCI patients were studied with confirmed or suspected COVID-19 infection. The majority of these patients were males (83.3%) with a median age of 55 years from three geographical locations, constituting the Middle East (7), Spain (3), and the USA (1). In 6 patients, IgG/IgM was positive for COVID-19, 4 with high pretest probability and 2 with positive RT-PCR. Type 2 DM, hyperlipidemia, and smoking were the primary risk factors. Right-sided neurological impairments and verbal impairment were the most common symptoms. Our analysis found 8 (66%) synchronous occurrences. In 58.3% of cases, neuroimaging showed left Middle Cerebral Artery (MCA) infarct and 33.3% right. Carotid artery thrombosis (16.6%), tandem occlusion (8.3%), and carotid stenosis (1%) were also reported in imaging. Dual antiplatelet therapy (DAPT) and anticoagulants were conservative therapies (10). Two AMI patients had aspiration thrombectomy, while three AIS patients had intravenous thrombolysis/tissue plasminogen activator (IVT-tPA), 2 had mechanical thrombectomy (MT), and 1 had decompressive craniotomy. Five had COVID-19-positive chest X-rays, whereas 4 were normal. four of 8 STEMI and 3 NSTEMI/UA patients complained chest pain. LV, ICA, and pulmonary embolism were further complications (2). Upon discharge, 7 patients (70%) had residual deficits while 1 patient unfortunately died.


Assuntos
COVID-19 , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticoagulantes/uso terapêutico , COVID-19/complicações , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/complicações , Acidente Vascular Cerebral/etiologia , Trombectomia/métodos , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento , Relatos de Casos como Assunto
15.
Biomaterials ; 297: 122102, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015177

RESUMO

Invasive neuroprosthetics rely on microelectrodes (MEs) to record or stimulate the activity of large neuron assemblies. However, MEs are subjected to tissue reactivity in the central nervous system (CNS) due to the foreign body response (FBR) that contribute to chronic neuroinflammation and ultimately result in ME failure. An endogenous, acute set of mechanisms responsible for the recognition and targeting of foreign objects, called the innate immune response, immediately follows the ME implant-induced trauma. Inflammasomes are multiprotein structures that play a critical role in the initiation of an innate immune response following CNS injuries. The activation of inflammasomes facilitates a range of innate immune response cascades and results in neuroinflammation and programmed cell death. Despite our current understanding of inflammasomes, their roles in the context of neural device implantation remain unknown. In this study, we implanted a non-functional Utah electrode array (UEA) into the rat somatosensory cortex and studied the inflammasome signaling and the corresponding downstream effects on inflammatory cytokine expression and the inflammasome-mediated cell death mechanism of pyroptosis. Our results not only demonstrate the continuous activation of inflammasomes and their contribution to neuroinflammation at the electrode-tissue interface but also reveal the therapeutic potential of targeting inflammasomes to attenuate the FBR in invasive neuroprosthetics.


Assuntos
Corpos Estranhos , Inflamassomos , Ratos , Animais , Inflamassomos/metabolismo , Inflamação/metabolismo , Doenças Neuroinflamatórias , Microeletrodos , Imunidade Inata
16.
Sci Rep ; 13(1): 4175, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914721

RESUMO

Transmission of Ebola virus (EBOV) primarily occurs via contact exposure of mucosal surfaces with infected body fluids. Historically, nonhuman primate (NHP) challenge studies have employed intramuscular (i.m.) or small particle aerosol exposure, which are largely lethal routes of infection, but mimic worst-case scenarios such as a needlestick or intentional release, respectively. When exposed by more likely routes of natural infection, limited NHP studies have shown delayed onset of disease and reduced mortality. Here, we performed a series of systematic natural history studies in cynomolgus macaques with a range of conjunctival exposure doses. Challenge with 10,000 plaque forming units (PFU) of EBOV was uniformly lethal, whereas 5/6 subjects survived lower dose challenges (100 or 500 PFU). Conjunctival challenge resulted in a protracted time-to death compared to i.m. Asymptomatic infection was observed in survivors with limited detection of EBOV replication. Inconsistent seropositivity in survivors may suggest physical or natural immunological barriers are sufficient to prevent widespread viral dissemination.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Animais , Macaca fascicularis , Túnica Conjuntiva , Primatas
17.
Viruses ; 15(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36851566

RESUMO

The Marburg and Ebola filoviruses cause a severe, often fatal, disease in humans and nonhuman primates but have only subclinical effects in bats, including Egyptian rousettes, which are a natural reservoir of Marburg virus. A fundamental question is why these viruses are highly pathogenic in humans but fail to cause disease in bats. To address this question, we infected one cohort of Egyptian rousette bats with Marburg virus and another cohort with Ebola virus and harvested multiple tissues for mRNA expression analysis. While virus transcripts were found primarily in the liver, principal component analysis (PCA) revealed coordinated changes across multiple tissues. Gene signatures in kidney and liver pointed at induction of vasodilation, reduction in coagulation, and changes in the regulation of iron metabolism. Signatures of immune response detected in spleen and liver indicated a robust anti-inflammatory state signified by macrophages in the M2 state and an active T cell response. The evolutionary divergence between bats and humans of many responsive genes might provide a framework for understanding the differing outcomes upon infection by filoviruses. In this study, we outline multiple interconnected pathways that respond to infection by MARV and EBOV, providing insights into the complexity of the mechanisms that enable bats to resist the disease caused by filoviral infections. The results have the potential to aid in the development of new strategies to effectively mitigate and treat the disease caused by these viruses in humans.


Assuntos
Quirópteros , Ebolavirus , Infecções por Filoviridae , Doença pelo Vírus Ebola , Marburgvirus , Humanos , Animais , Doença pelo Vírus Ebola/veterinária , Ebolavirus/genética , Fígado , Marburgvirus/genética
18.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445779

RESUMO

The emergence of the novel henipavirus, Langya virus, received global attention after the virus sickened over three dozen people in China. There is heightened concern that henipaviruses, as respiratory pathogens, could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near-annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus-based (rVSV-based) vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year before challenge with an uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated that adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest that rVSV-ΔG-NiVBG elicits long-lasting immunity.


Assuntos
COVID-19 , Vírus Nipah , Estomatite Vesicular , Vacinas Virais , Animais , Humanos , Chlorocebus aethiops , Vírus Nipah/genética , Anticorpos Antivirais , Vacinas Virais/genética , Vesiculovirus/genética
19.
Curr Probl Cardiol ; 48(8): 101236, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35500734

RESUMO

Pulmonary hypertension is one of the difficult situations to treat. Complex pathophysiology, association of the multiple comorbidities make clinical scenario challenging. Recently it is being shown that patients who had recovered from coronavirus disease infection, are at risk of developing pulmonary hypertension. Studies on animals have been going on to find out newer treatment options. There are recent advancements in the treatment of pulmonary hypertension. Role of anticoagulation, recombinant fusion proteins, stem cell therapy are emerging as therapeutic options for affected patients. SGLT2 inhibitors have potential to have beneficial effects on pulmonary hypertension. Apart from the medical managements, advanced interventions are also getting popular. In this review article, the authors have discussed pathophysiology, recent advancement of treatments including coronavirus disease patients, and future aspect of managing pulmonary hypertension. We have highlighted treatment options for patients with sleep apnea, interstitial lung disease to discuss the challenges and possible options to manage those patients.


Assuntos
Hipertensão Pulmonar , Animais , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Comorbidade
20.
Cell Rep ; 40(3): 111094, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858566

RESUMO

Lassa virus (LASV) is recognized by the World Health Organization as one of the top five pathogens likely to cause a severe outbreak. A recent unprecedented resurgence of LASV in Nigeria caused by genetically diverse strains underscores the need for licensed medical countermeasures. Single-injection vaccines that can rapidly control outbreaks and confer long-term immunity are needed. Vaccination of cynomolgus monkeys with a recombinant vesicular stomatitis virus vector expressing the glycoprotein precursor of LASV lineage IV strain Josiah (rVSVΔG-LASV-GPC) induces fast-acting protection in monkeys challenged 3 or 7 days later with a genetically heterologous lineage II isolate of LASV from Nigeria, while nonspecifically vaccinated control animals succumb to challenge. The rVSVΔG-LASV-GPC vaccine induces rapid activation of adaptive immunity and the transcription of natural killer (NK) cell-affiliated mRNAs. This study demonstrates that rVSVΔG-LASV-GPC may provide rapid protection in humans against LASV infections in cases where immediate public-health intervention is required.


Assuntos
Febre Lassa , Vacinas Virais , Animais , Humanos , Febre Lassa/prevenção & controle , Vírus Lassa , Macaca fascicularis , Vacinas Sintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...