Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
6.
BMC Genomics ; 23(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34979916

RESUMO

BACKGROUND: Because some of its CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs, the South African claw-toed frog, Xenopus laevis, offers unique opportunities for exploring differences between regenerative and non-regenerative responses to CNS injury within the same organism. An earlier, three-way RNA-seq study (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) identified genes that regulate chromatin accessibility among those that were differentially expressed in regenerative vs non-regenerative CNS [11]. The current study used whole genome bisulfite sequencing (WGBS) of DNA collected from these same animals at the peak period of axon regeneration to study the extent to which DNA methylation could potentially underlie differences in chromatin accessibility between regenerative and non-regenerative CNS. RESULTS: Consistent with the hypothesis that DNA of regenerative CNS is more accessible than that of non-regenerative CNS, DNA from both the regenerative tadpole hindbrain and frog eye was less methylated than that of the non-regenerative frog hindbrain. Also, consistent with observations of CNS injury in mammals, DNA methylation in non-regenerative frog hindbrain decreased after SCI. However, contrary to expectations that the level of DNA methylation would decrease even further with axotomy in regenerative CNS, DNA methylation in these regions instead increased with injury. Injury-induced differences in CpG methylation in regenerative CNS became especially enriched in gene promoter regions, whereas non-CpG methylation differences were more evenly distributed across promoter regions, intergenic, and intragenic regions. In non-regenerative CNS, tissue-related (i.e., regenerative vs. non-regenerative CNS) and injury-induced decreases in promoter region CpG methylation were significantly correlated with increased RNA expression, but the injury-induced, increased CpG methylation seen in regenerative CNS across promoter regions was not, suggesting it was associated with increased rather than decreased chromatin accessibility. This hypothesis received support from observations that in regenerative CNS, many genes exhibiting increased, injury-induced, promoter-associated CpG-methylation also exhibited increased RNA expression and association with histone markers for active promoters and enhancers. DNA immunoprecipitation for 5hmC in optic nerve regeneration found that the promoter-associated increases seen in CpG methylation were distinct from those exhibiting changes in 5hmC. CONCLUSIONS: Although seemingly paradoxical, the increased injury-associated DNA methylation seen in regenerative CNS has many parallels in stem cells and cancer. Thus, these axotomy-induced changes in DNA methylation in regenerative CNS provide evidence for a novel epigenetic state favoring successful over unsuccessful CNS axon regeneration. The datasets described in this study should help lay the foundations for future studies of the molecular and cellular mechanisms involved. The insights gained should, in turn, help point the way to novel therapeutic approaches for treating CNS injury in mammals.


Assuntos
Axônios , Regeneração Nervosa , Animais , Axônios/metabolismo , Sistema Nervoso Central , Metilação de DNA , Regeneração Nervosa/genética , Células Ganglionares da Retina , Xenopus laevis/genética
7.
Mol Ecol Resour ; 22(1): 45-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34176238

RESUMO

When a high-quality genome assembly of a target species is unavailable, an option to avoid the costly de novo assembly process is a mapping-based assembly. However, mapping shotgun data to a distant relative may lead to biased or erroneous evolutionary inference. Here, we used short-read data from a mammal (beluga whale) and a bird species (rowi kiwi) to evaluate whether reference genome phylogenetic distance can impact downstream demographic (Pairwise Sequentially Markovian Coalescent) and genetic diversity (heterozygosity, runs of homozygosity) analyses. We mapped to assemblies of species of varying phylogenetic distance (from conspecific to genome-wide divergence of >7%), and de novo assemblies created using cross-species scaffolding. We show that while reference genome phylogenetic distance has an impact on demographic analyses, it is not pronounced until using a reference genome with >3% divergence from the target species. When mapping to cross-species scaffolded assemblies, we are unable to replicate the original beluga demographic results, but are able with the rowi kiwi, presumably reflecting the more fragmented nature of the beluga assemblies. We find that increased phylogenetic distance has a pronounced impact on genetic diversity estimates; heterozygosity estimates deviate incrementally with increasing phylogenetic distance. Moreover, runs of homozygosity are largely undetectable when mapping to any nonconspecific assembly. However, these biases can be reduced when mapping to a cross-species scaffolded assembly. Taken together, our results show that caution should be exercised when selecting reference genomes. Cross-species scaffolding may offer a way to avoid a costly, traditional de novo assembly, while still producing robust, evolutionary inference.


Assuntos
Filogenia
14.
Biol Cell ; 113(1): 58-78, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112425

RESUMO

BACKGROUND INFORMATION: Like other apicomplexan parasites, Toxoplasma gondii harbours a four-membraned endosymbiotic organelle - the apicoplast. Apicoplast proteins are nuclear encoded and trafficked to the organelle through the endoplasmic reticulum (ER). From the ER to the apicoplast, two distinct protein trafficking pathways can be used. One such pathway is the cell's secretory pathway involving the Golgi, whereas the other is a unique Golgi-independent pathway. Using different experimental approaches, many apicoplast proteins have been shown to utilize the Golgi-independent pathway, whereas a handful of reports show that a few proteins use the Golgi-dependent pathway. This has led to an emphasis towards the unique Golgi-independent pathway when apicoplast protein trafficking is discussed in the literature. Additionally, the molecular features that drive proteins to each pathway are not known. RESULTS: In this report, we systematically test eight apicoplast proteins, using a C-terminal HDEL sequence to assess the role of the Golgi in their transport. We demonstrate that dually localised proteins of the apicoplast and mitochondrion (TgSOD2, TgTPx1/2 and TgACN/IRP) are trafficked through the Golgi, whereas proteins localised exclusively to the apicoplast are trafficked independent of the Golgi. Mutants of the dually localised proteins that localised exclusively to the apicoplast also showed trafficking through the Golgi. Phylogenetic analysis of TgSOD2, TgTPx1/2 and TgACN/IRP suggested that the evolutionary origins of TgSOD2 and TgTPx1/2 lie in the mitochondrion, whereas TgACN/IRP appears to have originated from the apicoplast. CONCLUSIONS AND SIGNIFICANCE: Collectively, with these results, for the first time, we establish that the driver of the Golgi-dependent trafficking route to the apicoplast is the dual localisation of the protein to the apicoplast and the mitochondrion.


Assuntos
Apicoplastos/metabolismo , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Transporte Proteico , Toxoplasma/metabolismo
15.
BMC Genomics ; 21(1): 540, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758133

RESUMO

BACKGROUND: The South African claw-toed frog, Xenopus laevis, is uniquely suited for studying differences between regenerative and non-regenerative responses to CNS injury within the same organism, because some CNS neurons (e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g., hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs. Tissues from these CNS regions (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) were used in a three-way RNA-seq study of axotomized CNS axons to identify potential core gene expression programs for successful CNS axon regeneration. RESULTS: Despite tissue-specific changes in expression dominating the injury responses of each tissue, injury-induced changes in gene expression were nonetheless shared between the two axon-regenerative CNS regions that were not shared with the non-regenerative region. These included similar temporal patterns of gene expression and over 300 injury-responsive genes. Many of these genes and their associated cellular functions had previously been associated with injury responses of multiple tissues, both neural and non-neural, from different species, thereby demonstrating deep phylogenetically conserved commonalities between successful CNS axon regeneration and tissue regeneration in general. Further analyses implicated the KEGG adipocytokine signaling pathway, which links leptin with metabolic and gene regulatory pathways, and a novel gene regulatory network with genes regulating chromatin accessibility at its core, as important hubs in the larger network of injury response genes involved in successful CNS axon regeneration. CONCLUSIONS: This study identifies deep, phylogenetically conserved commonalities between CNS axon regeneration and other examples of successful tissue regeneration and provides new targets for studying the molecular underpinnings of successful CNS axon regeneration, as well as a guide for distinguishing pro-regenerative injury-induced changes in gene expression from detrimental ones in mammals.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Perfilação da Expressão Gênica , Regeneração Nervosa/genética , Nervo Óptico , Traumatismos da Medula Espinal/genética , Xenopus laevis/genética
16.
J Pers Med ; 11(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383702

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous condition with a complex genetic etiology. The objective of this study is to identify the complex genetic factors that underlie the ASD phenotype and other clinical features of Professor Temple Grandin, an animal scientist and woman with high-functioning ASD. Identifying the underlying genetic cause for ASD can impact medical management, personalize services and treatment, and uncover other medical risks that are associated with the genetic diagnosis. Prof. Grandin underwent chromosomal microarray analysis, whole exome sequencing, and whole genome sequencing, as well as a comprehensive clinical and family history intake. The raw data were analyzed in order to identify possible genotype-phenotype correlations. Genetic testing identified variants in three genes (SHANK2, ALX1, and RELN) that are candidate risk factors for ASD. We identified variants in MEFV and WNT10A, reported to be disease-associated in previous studies, which are likely to contribute to some of her additional clinical features. Moreover, candidate variants in genes encoding metabolic enzymes and transporters were identified, some of which suggest potential therapies. This case report describes the genomic findings in Prof. Grandin and it serves as an example to discuss state-of-the-art clinical diagnostics for individuals with ASD, as well as the medical, logistical, and economic hurdles that are involved in clinical genetic testing for an individual on the autism spectrum.

17.
J Neurodev Disord ; 11(1): 3, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732576

RESUMO

BACKGROUND: Ultra-rare genetic variants, including non-recurrent copy number variations (CNVs) affecting important dosage-sensitive genes, are important contributors to the etiology of neurodevelopmental disorders (NDDs). Pairing family-based whole-genome sequencing (WGS) with detailed phenotype data can enable novel gene associations in NDDs. METHODS: We performed WGS of six members from a three-generation family, where three individuals each had a spectrum of features suggestive of a NDD. CNVs and sequence-level variants were identified and further investigated in disease and control databases. RESULTS: We identified a novel 252-kb deletion at 15q21 that overlaps the synaptic gene DMXL2 and the gene GLDN. The microdeletion segregated in NDD-affected individuals. Additional rare inherited and de novo sequence-level variants were found that may also be involved, including a missense change in GRIK5. Multiple CNVs and loss-of-function sequence variants affecting DMXL2 were discovered in additional unrelated individuals with a range of NDDs. CONCLUSIONS: Disruption of DMXL2 may predispose to NDDs including autism spectrum disorder. The robust interpretation of private variants requires a multifaceted approach that incorporates multigenerational pedigrees and genome-wide and population-scale data.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Variações do Número de Cópias de DNA , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Sequenciamento Completo do Genoma , Adulto , Transtorno do Espectro Autista/genética , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
18.
Eur J Med Genet ; 62(1): 15-20, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29729439

RESUMO

Copy number variants (CNV)s involving KANK1 are generally classified as variants of unknown significance. Several clinical case reports suggest that the loss of KANK1 on chromosome 9p24.3 has potential impact on neurodevelopment. These case studies are inconsistent in terms of patient phenotype and suspected pattern of inheritance. Further complexities arise because these published reports utilize a variety of genetic testing platforms with varying resolution of the 9p region; this ultimately causes uncertainty about the impacted genomic coordinates and gene transcripts. Beyond these case reports, large case-control studies and publicly available databases statistically cast doubt as to whether variants of KANK1 are clinically significant. However, these large data sources are neither easily extracted nor uniformly applied to clinical interpretation. In this report we provide an updated analysis of the data on this locus and its potential clinical relevance. This is based on a review of the literature as well as 28 patients who harbor a single copy number variant involving KANK1 with or without DOCK8 (27 of whom are not published previously) identified by our clinical laboratory using an ultra-high resolution chromosomal microarray analysis. We note that 13 of 16 patients have a documented diagnosis of autism spectrum disorder (ASD) while only two, with documented perinatal complications, have a documented diagnosis of cerebral palsy (CP). A careful review of the CNVs suggests a transcript-specific effect. After evaluation of our case series and reconsideration of the literature, we propose that KANK1 aberrations do not frequently cause CP but cannot exclude that they represent a risk factor for ASD, especially when the coding region of the shorter, alternate KANK1 transcript (termed "transcript 4" in the UCSC Genome Browser) is impacted.


Assuntos
Transtorno do Espectro Autista/genética , Paralisia Cerebral/genética , Variações do Número de Cópias de DNA , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal , Transtorno do Espectro Autista/patologia , Paralisia Cerebral/patologia , Proteínas do Citoesqueleto , Estudo de Associação Genômica Ampla , Humanos
19.
Neurol Genet ; 5(6): e378, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32042908

RESUMO

OBJECTIVE: To evaluate a new tool to aid interpretation of copy number variants (CNVs) in individuals with neurodevelopmental disabilities. METHODS: Critical exon indexing (CEI) was used to identify genes with critical exons (CEGs) from clinically reported CNVs, which may contribute to neurodevelopmental disorders (NDDs). The 742 pathogenic CNVs and 1,363 variants of unknown significance (VUS) identified by chromosomal microarray analysis in 5,487 individuals with NDDs were subjected to CEI to identify CEGs. CEGs identified in a subsequent random series of VUS were evaluated for relevance to CNV interpretation. RESULTS: CEI identified a total of 2,492 unique CEGs in pathogenic CNVs and 953 in VUS compared with 259 CEGs in 6,965 CNVs from 873 controls. These differences are highly significant (p < 0.00001) whether compared as frequency, average, or normalized by CNV size. Twenty-one percent of VUS CEGs were not represented in Online Mendelian Inheritance in Man, highlighting limitations of existing resources for identifying potentially impactful genes within CNVs. CEGs were highly correlated with other indices and known pathways of relevance. Separately, 136 random VUS reports were reevaluated, and 76% of CEGs had not been commented on. In multiple cases, further investigation yielded additional relevant literature aiding interpretation. As one specific example, we discuss GTF2I as a CEG, which likely alters interpretation of several reported duplication VUS in the Williams-Beuren region. CONCLUSIONS: Application of CEI to CNVs in individuals with NDDs can identify genes of potential clinical relevance, aid laboratories in effectively searching the clinical literature, and support the clinical reporting of poorly annotated VUS.

20.
Crit Ultrasound J ; 10(1): 33, 2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30536155

RESUMO

BACKGROUND: Focused cardiac ultrasound (FOCUS) is a core competency for pediatric emergency medicine (PEM) fellows. The objectives of this study were (1) to evaluate test characteristics of PEM-fellow-performed FOCUS for pericardial effusion and diminished cardiac function and (2) to assess image interpretation independent of image acquisition. METHODS: PEM fellows performed and interpreted FOCUS on patients who also received cardiology service echocardiograms, the reference standard. Subsequently, eight different PEM fellows remotely interpreted a subset of the PEM-acquired and cardiology-acquired echocardiograms. RESULTS: Eight PEM fellows performed 54 FOCUS exams, of which two had pericardial effusion and four had diminished function. PEM fellow FOCUS had a sensitivity of 50.0% (95% CI 9.19-90.8) and specificity of 100.0% (95% CI 91.1-100.0) for detecting diminished function, and sensitivity of 50.0% (95% CI 2.67-97.33) and specificity of 98.1% (95% CI 88.42-99.9) for detecting pericardial effusions. When PEM fellows remotely interpreted 15 echocardiograms, the sensitivity was 81.3% (95% CI 70.7-88.8) and specificity 75% (95% CI 67.0-81.0) for detecting diminished function, and sensitivity of 76.3% (95% CI 65.0-85.0) and specificity 94.4% (95% CI 89.0-97.0) for detecting pericardial effusion. There were no differences in sensitivity and specificity of PEM fellows' interpretation of FOCUS studies compared to their interpretation of cardiology echocardiograms. Interrater reliability for interpretation of remote images (kappa) was 0.66 (95% CI 0.59-0.73) for effusion and 0.31 (95% CI 0.24-0.38) for function among the fellows. CONCLUSION: Novice PEM fellow sonologists (a physician who performs and interprets ultrasound) in the majority of instances were able to acquire and remotely interpret FOCUS images with limited training. However, they made real-time interpretation errors and likely need further training to incorporate real-time image acquisition and interpretation into their practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...