Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 11: 554927, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362726

RESUMO

Haloarchaea inhabit high salinity environments worldwide. They are a potentially rich source of crucial biomolecules like carotenoids and industrially useful proteins. However, diversity in haloarchaea present in Indian high salinity environments is poorly studied. In the present study, we isolated 12 haloarchaeal strains from hypersaline Kottakuppam, Tamil Nadu solar saltern in India. 16S rRNA based taxonomic characterization of these isolates suggested that nine of them are novel strains that belong to genera Haloarcula, Halomicrobium, and Haloferax. Transmission electron microscopy suggests the polymorphic nature of these haloarchaeal isolates. Most of the haloarchaeal species are known to be high producers of carotenoids. We were able to isolate carotenoids from all these 12 isolates. The UV-Vis spectroscopy-based analysis suggests that bacterioruberin and lycopene are the major carotenoids produced by these isolates. Based on the visual inspection of the purified carotenoids, the isolates were classified into two broad categories i.e., yellow and orange, attributed to the differences in the ratio of bacterioruberin and lycopene as confirmed by the UV-Vis spectral analysis. Using a PCR-based screening assay, we were able to detect the presence of the bacteriorhodopsin gene (bop) in 11 isolates. We performed whole-genome sequencing for three bop positive and one bop negative haloarchaeal isolates. Whole-genome sequencing, followed by pan-genome analysis identified multiple unique genes involved in various biological functions. We also successfully cloned, expressed, and purified functional recombinant bacteriorhodopsin (BR) from one of the isolates using Escherichia coli as an expression host. BR has light-driven proton pumping activity resulting in the proton gradient across the membrane, which is utilized by V-Type ATPases to produce ATP. We analyzed the distribution of bop and other accessory genes involved in functional BR expression and ATP synthesis in all the representative haloarchaeal species. Our bioinformatics-based analysis of all the sequenced members of genus Haloarcula suggests that bop, if present, is usually inserted between the genes coding for B and D subunits of the V-type ATPases operon. This study provides new insights into the genomic variations in haloarchaea and reports expression of new BR variant having good expression in functional form in E. coli.

3.
Front Microbiol ; 11: 2082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983058

RESUMO

Haloarchaea are salt-loving archaea and potential source of industrially relevant halotolerant enzymes. In the present study, three reddish-pink, extremely halophilic archaeal strains, namely wsp1 (wsp-water sample Pondicherry), wsp3, and wsp4, were isolated from the Indian Solar saltern. The phylogenetic analysis based on 16S rRNA gene sequences suggests that both wsp3 and wsp4 strains belong to Halogeometricum borinquense while wsp1 is closely related to Haloferax volcanii species. The comparative genomics revealed an open pangenome for both genera investigated here. Whole-genome sequence analysis revealed that these isolates have multiple copies of industrially/biotechnologically important unique genes and enzymes. Among these unique enzymes, for recombinant expression and purification, we selected four putative α-amylases identified in these three isolates. We successfully purified functional halotolerant recombinant Amy2, from wsp1 using pelB signal sequence-based secretion strategy using Escherichia coli as an expression host. This method may prove useful to produce functional haloarchaeal secretory recombinant proteins suitable for commercial or research applications. Biochemical analysis of Amy2 suggests the halotolerant nature of the enzyme having maximum enzymatic activity observed at 1 M NaCl. We also report the isolation and characterization of carotenoids purified from these isolates. This study highlights the presence of several industrially important enzymes in the haloarchaeal strains which may potentially have improved features like stability and salt tolerance suitable for industrial applications.

4.
Microb Biotechnol ; 12(3): 434-446, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30648822

RESUMO

Interesting optical and photochemical properties make microbial rhodopsin a promising biological material suitable for various applications, but the cost-prohibitive nature of production has limited its commercialization. The aim of this study was to explore the natural biodiversity of Indian solar salterns to isolate natural bacteriorhodopsin (BR) variants that can be functionally expressed in Escherichia coli. In this study, we report the isolation, functional expression and purification of BRs from three pigmented haloarchaea, wsp3 (water sample Pondicherry), wsp5 and K1T isolated from two Indian solar salterns. The results of the 16S rRNA data analysis suggest that wsp3, wsp5 and K1T are novel strains belonging to the genera Halogeometricum, Haloferax and Haloarcula respectively. Overall, the results of our study suggest that 17 N-terminal residues, that were not included in the gene annotation of the close sequence homologues, are essential for functional expression of BRs. The primary sequence, secondary structural content, thermal stability and absorbance spectral properties of these recombinant BRs are similar to those of the previously reported Haloarcula marismortui HmBRI. This study demonstrates the cost-effective, functional expression of BRs isolated from haloarchaeal species using E. coli as an expression host and paves the way for feasibility studies for future applications.


Assuntos
Bacteriorodopsinas/metabolismo , Expressão Gênica , Haloarcula/isolamento & purificação , Halobacteriaceae/isolamento & purificação , Haloferax/isolamento & purificação , Dobramento de Proteína , Microbiologia da Água , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Bacteriorodopsinas/isolamento & purificação , Clonagem Molecular , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Haloarcula/classificação , Haloarcula/genética , Haloarcula/metabolismo , Halobacteriaceae/classificação , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Haloferax/classificação , Haloferax/genética , Haloferax/metabolismo , Índia , Filogenia , Conformação Proteica , Estabilidade Proteica , RNA Ribossômico 16S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...