Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39103133

RESUMO

In this study, the antiparkinson effect of khellin (KL) on rotenone-induced Parkinson's disease (PD) was examined in zebrafish. Initially, In silico evaluations, such as drug likeness and ADME/T analysis, confirmed the pharmacological viability of KL. Molecular docking and molecular dynamics (MD) analysis revealed stable binding interactions between KL and monamine oxidase B (MAO-B). Molecular docking results for KL and pioglitazone (CCl) revealed binding energies of -6.5 and -10.4 kcal/mol, respectively. Later, molecular dynamics (MD) studies were performed to assess the stability of these complexes, which yielded binding energies of -36.04 ± 55.21 and -56.2 ± 80.63 kJ/mol for KL and CCl, respectively. These results suggest that KL exhibits considerable binding affinity for MAO-B. In In vitro studies, according to the DPPH free radical scavenging assay, KL exhibited significant antioxidant effects, indicating that it can promote redox balance with an IC50 value of 22.68 ± 0.5 µg/ml. In vivo studies and evaluation of locomotor activity, social interaction, histopathology and biochemical parameters were conducted in KL-treated zebrafish to measure SOD and GSH antioxidant activity, the oxidative stress marker malondialdehyde (MDA), the inflammatory marker myeloperoxidase (MPO) and MAO-B. However, while the locomotor and social interaction abilities of the rotenone-treated zebrafish were significantly reduced, KL treatment significantly improved locomotor activity (p < 0.001) and social interaction (p < 0.001). KL alleviated PD symptoms, as indicated by significant increases in SOD (p < 0.01), GSH (p < 0.001), MDA (p < 0.001), MAO-B (p < 0.001) and MPO (p < 0.001) in rotenone-induced PD fish (p<0.001) significantly reduced activities. Histopathological studies revealed that rotenone-induced brain hyperintensity and abnormal cellularity of the periventricular gray matter in the optic tectum were significantly reduced by KL treatment. This study provides a strong basis for developing KL as a new candidate for the treatment of Parkinson's disease, with the prospect of improved safety profiles and efficacy.


Assuntos
Antiparkinsonianos , Simulação de Acoplamento Molecular , Monoaminoxidase , Estresse Oxidativo , Rotenona , Peixe-Zebra , Animais , Rotenona/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Antiparkinsonianos/farmacologia , Monoaminoxidase/metabolismo , Simulação de Dinâmica Molecular , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Modelos Animais de Doenças , Inibidores da Monoaminoxidase/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino
2.
Eur J Pharmacol ; 970: 176490, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492876

RESUMO

Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neuroinflamatórias , Janus Quinase 2/metabolismo , Fatores de Transcrição/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Apoptose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA