Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6089, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284092

RESUMO

Acoustic communication, broadly distributed along the vertebrate phylogeny, plays a fundamental role in parental care, mate attraction and various other behaviours. Despite its importance, comparatively less is known about the evolutionary roots of acoustic communication. Phylogenetic comparative analyses can provide insights into the deep time evolutionary origin of acoustic communication, but they are often plagued by missing data from key species. Here we present evidence for 53 species of four major clades (turtles, tuatara, caecilian and lungfish) in the form of vocal recordings and contextual behavioural information accompanying sound production. This and a broad literature-based dataset evidence acoustic abilities in several groups previously considered non-vocal. Critically, phylogenetic analyses encompassing 1800 species of choanate vertebrates reconstructs acoustic communication as a homologous trait, and suggests that it is at least as old as the last common ancestor of all choanate vertebrates, that lived approx. 407 million years before present.


Assuntos
Evolução Biológica , Vertebrados , Animais , Filogenia , Vertebrados/genética , Acústica , Comunicação
2.
Sci Rep ; 11(1): 10396, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001926

RESUMO

Despite the relevance of chemical communication in vertebrates, comparative examinations of macroevolutionary trends in chemical signaling systems are scarce. Many turtle and tortoise species are reliant on chemical signals to communicate in aquatic and terrestrial macrohabitats, and many of these species possess specialized integumentary organs, termed mental glands (MGs), involved in the production of chemosignals. We inferred the evolutionary history of MGs and tested the impact of macrohabitat on their evolution. Inference of ancestral states along a time-calibrated phylogeny revealed a single origin in the ancestor of the subclade Testudinoidea. Thus, MGs represent homologous structures in all descending lineages. We also inferred multiple independent losses of MGs in both terrestrial and aquatic clades. Although MGs first appeared in an aquatic turtle (the testudinoid ancestor), macrohabitat seems to have had little effect on MG presence or absence in descendants. Instead, we find clade-specific evolutionary trends, with some clades showing increased gland size and morphological complexity, whereas others exhibiting reduction or MG loss. In sister clades inhabiting similar ecological niches, contrasting patterns (loss vs. maintenance) may occur. We conclude that the multiple losses of MGs in turtle clades have not been influenced by macrohabitat and that other factors have affected MG evolution.


Assuntos
Evolução Biológica , Tegumento Comum/fisiologia , Feromônios/química , Tartarugas/fisiologia , Comunicação Animal , Animais , Fenômenos Biomecânicos , Ecossistema , Tegumento Comum/anatomia & histologia , Feromônios/biossíntese , Filogenia , Transdução de Sinais/genética , Tartarugas/anatomia & histologia
3.
Genes (Basel) ; 11(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560114

RESUMO

Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.


Assuntos
Centrômero/genética , Sequências Repetitivas de Ácido Nucleico/genética , Telômero/genética , Tartarugas/genética , Animais , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Lagartos/genética , Masculino , Cromossomos Sexuais/genética , Serpentes/genética
4.
Sci Rep ; 10(1): 6086, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32242096

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 4276, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152354

RESUMO

Turtles demonstrate variability in sex determination and, hence, constitute an excellent model for the evolution of sex chromosomes. Notably, the sex determination of the freshwater turtles from the family Chelidae, a species-rich group with wide geographical distribution in the southern hemisphere, is still poorly explored. Here we documented the presence of an XX/XY sex determination system in seven species of the Australasian chelid genera Chelodina, Emydura, and Elseya by conventional (karyogram reconstruction, C-banding) and molecular cytogenetic methods (comparative genome hybridization, in situ hybridization with probes specific for GATA microsatellite motif, the rDNA loci, and the telomeric repeats). The sex chromosomes are microchromosomes in all examined species of the genus Chelodina. In contrast, the sex chromosomes are the 4th largest pair of macrochromosomes in the genera Emydura and Elseya. Their X chromosomes are submetacentric, while their Y chromosomes are metacentric. The chelid Y chromosomes contain a substantial male-specific genomic region with an accumulation of the GATA microsatellite motif, and occasionally, of the rDNA loci and telomeric repeats. Despite morphological differences between sex chromosomes, we conclude that male heterogamety was likely already present in the common ancestor of Chelodina, Emydura and Elseya in the Mesozoic period.


Assuntos
Evolução Molecular , Genoma , Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Cariótipo , Masculino , Repetições de Microssatélites , Processos de Determinação Sexual , Tartarugas
6.
PeerJ ; 7: e6241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30755825

RESUMO

For a long time, turtles of the family Geoemydidae have been considered exceptional because representatives of this family were thought to possess a wide variety of sex determination systems. In the present study, we cytogenetically studied Geoemyda spengleri and G. japonica and re-examined the putative presence of sex chromosomes in Pangshura smithii. Karyotypes were examined by assessing the occurrence of constitutive heterochromatin, by comparative genome hybridization and in situ hybridization with repetitive motifs, which are often accumulated on differentiated sex chromosomes in reptiles. We found similar karyotypes, similar distributions of constitutive heterochromatin and a similar topology of tested repetitive motifs for all three species. We did not detect differentiated sex chromosomes in any of the species. For P. smithii, a ZZ/ZW sex determination system, with differentiated sex chromosomes, was described more than 40 years ago, but this finding has never been re-examined and was cited in all reviews of sex determination in reptiles. Here, we show that the identification of sex chromosomes in the original report was based on the erroneous pairing of chromosomes in the karyogram, causing over decades an error cascade regarding the inferences derived from the putative existence of female heterogamety in geoemydid turtles.

7.
Naturwissenschaften ; 105(5-6): 34, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728774

RESUMO

Chinese softshell turtles (Pelodiscus spp.) are widely distributed, ranging from the Amur and Ussuri Rivers in the Russian Far East through the Korean Peninsula, Japan, and eastern, central, and southern China to southern Vietnam. In East and Southeast Asia, Chinese softshell turtles are traditionally exploited for food and have been farm-bred in China since the Spring and Autumn Period, more than 2400 years ago. Currently, the annual production of Pelodiscus amounts to 340,000 t in China alone. Using mitochondrial DNA (2428 bp) and five nuclear loci (3704 bp), we examined broad sampling of wild and farm-bred Pelodiscus to infer genetic and taxonomic differentiation. We discovered four previously unknown mitochondrial lineages, all from China. One lineage from Jiangxi is deeply divergent and sister to the mitochondrial lineage of Pelodiscus axenaria. The nuclear loci supported species status for P. axenaria and the new lineage from Jiangxi. Pelodiscus maackii and P. parviformis, both harboring distinct mitochondrial lineages, were not differentiated from P. sinensis in the studied nuclear markers. The same is true for two new mitochondrial lineages from Zhejiang, China, represented by only one individual each, and another new lineage from Anhui, Guangdong, Jiangxi and Zhejiang, China. However, Vietnamese turtles yielding a mitochondrial lineage clustering within P. sinensis were distinct in nuclear markers, suggesting that these populations could represent another unknown species with introgressed mitochondria. Its species status is also supported by the syntopic occurrence with P. sinensis in northern Vietnam and by morphology. In addition, we confirmed sympatry of P. axenaria and P. parviformis in Guangxi, China, and found evidence for sympatry of P. sinensis and the new putative species from Jiangxi, China. We also discovered evidence for hybridization in turtle farms and for the occurrence of alien lineages in the wild (Zhejiang, China), highlighting the risk of genetic pollution of native stock. In the face of the large-scale breeding of Pelodiscus, we claim that the long-term survival of distinct genetic lineages and species can only be assured when an upscale market segment for pure-bred softshell turtles is established, making the breeding of pure lineages lucrative for turtle farms. Our findings underline that the diversity of Pelodiscus is currently underestimated and threatened by anthropogenic admixture. We recommend mass screening of genetic and morphological variation of Chinese softshell turtles as a first step to understand and preserve their diversity.


Assuntos
Biodiversidade , Cruzamento , Tartarugas/classificação , Tartarugas/genética , Animais , China , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Filogenia
8.
Sci Rep ; 7: 42150, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186115

RESUMO

Turtles demonstrate variability in sex determination ranging from environmental sex determination (ESD) to highly differentiated sex chromosomes. However, the evolutionary dynamics of sex determining systems in this group is not well known. Differentiated ZZ/ZW sex chromosomes were identified in two species of the softshell turtles (Trionychidae) from the subfamily Trionychinae and Z-specific genes were identified in a single species. We tested Z-specificity of a subset of these genes by quantitative PCR comparing copy gene numbers in male and female genomes in 10 species covering the phylogenetic diversity of trionychids. We demonstrated that differentiated ZZ/ZW sex chromosomes are conserved across the whole family and that they were already present in the common ancestor of the extant trionychids. As the sister lineage, Carettochelys insculpta, possess ESD, we can date the origin of the sex chromosomes in trionychids between 200 Mya (split of Trionychidae and Carettochelyidae) and 120 Mya (basal splitting of the recent trionychids). The results support the evolutionary stability of differentiated sex chromosomes in some lineages of ectothermic vertebrates. Moreover, our approach determining sex-linkage of protein coding genes can be used as a reliable technique of molecular sexing across trionychids useful for effective breeding strategy in conservation projects of endangered species.


Assuntos
Filogenia , RNA Ribossômico/genética , Cromossomos Sexuais/química , Processos de Determinação Sexual , Tartarugas/genética , Exoesqueleto/anatomia & histologia , Animais , Evolução Biológica , Mapeamento Cromossômico , Feminino , Interação Gene-Ambiente , História Antiga , Masculino , RNA Ribossômico/história , Tartarugas/anatomia & histologia , Tartarugas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...