Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 131(4): 044130, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19655860

RESUMO

A new implementation of the correlation consistent composite approach (ccCA), denoted RI-ccCA, utilizing both the resolution of the identity (RI) and local methods is presented. A set of 102 molecules composed of first and second row, main group atoms is employed to compare total energies, atomization energies, and enthalpies of formation between the original ccCA implementation and those of RI-ccCA. Relative CPU time and disk space requirements of RI-ccCA as compared to ccCA, demonstrate that on the average, employing the RI approximation in ccCA affords CPU time savings over 70% and disk space requirements diminished by well over 90% without introducing significant error in energetic properties.

2.
J Phys Chem A ; 111(49): 12778-84, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17999480

RESUMO

The interaction of benzene with a Ag(111) surface has been determined using reliable ab initio electronic structure calculations. The results are compared to a recent detailed analysis of the interaction of benzene with copper and gold surfaces, thus making it possible to derive a consistent picture for the electronic structure changes encountered when benzene is brought into contact with the densely packed coinage metal surfaces. To avoid the problems encountered when the presently most frequently employed computational approach, density functional theory (DFT), is applied to adsorbate systems where dispersion (or van der Waals) forces contribute substantially, we use a wavefunction-based approach. In this approach, the weak van der Waals interactions, which are dominated by correlation effects, are described using second-order perturbation theory. The surface dipole moment and the work function changes induced upon adsorption are also discussed.

3.
J Chem Phys ; 127(12): 124110, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17902896

RESUMO

Systematic truncation of the correlation consistent basis sets has been investigated in first and second row atoms and molecules to better understand basis set requirements for density functional theory, particularly the need for high angular momentum functions, as well as to understand possible computational cost savings that could be achieved by using reduced basis sets. The truncation scheme employed follows that recently introduced for ab initio methods [B. Mintz et al., J. Chem. Phys. 121, 5629 (2004)]. Properties examined in the current study include geometries, ionization potentials, electron affinities, and dissociation energies. In general, this investigation shows that a degree of truncation of higher angular momentum functions is possible with limited impact upon energetic properties, and does result in useful CPU time savings. However, not all properties investigated have the same level of dependence upon high angular momentum functions, and, thus, careful selection of truncated basis sets should be made.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA