Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17821, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857785

RESUMO

This present research aimed to investigate the novel applications of synthesized La doped CuFe2O4 nanomaterial (LCF NMs) using renewable bio-fuel (Aegle Marmelos extract) by combustion process. The sensor applications were accomplished by modified electrode using LCF NMs with graphite powder and examined its excellent sensing action towards heavy metal (Lead content) and drug chemical (Paracetamol) substances. The thermodynamics of redox potential and super-capacitor behavior of LCF NMs were investigated through Cyclic Voltametric (CV) and Electrochemical Impedance Spectral (EIS) methods under specific conditions at scan rate of 1 to 5 mV/s. The heterogeneous photo-catalytic process of prepared NMs on Fast orange Red (FOR) dye-decolouration was investigated and noted its excellent degradation (91.7%) at 90 min using 20 ppm of dye solution and 40 mg of synthesized samples under Sun-light irradiation. Further, the antibacterial activity of synthesized NMs is investigated against various strains of gram positive (Bacillus subtillis) and gram negative bacteria (Pseudomonas aeruginosa), which confirms that the LCF NMs have higher activity towards gram positive bacteria with an average inhibition zone of 19 mm. This synthesized LCF NMs is a multi-functional material with stable and eco-friendly materials.


Assuntos
Acetaminofen , Nanoestruturas , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Bactérias Gram-Positivas , Bactérias Gram-Negativas
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 123005, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327499

RESUMO

The Europium activated (1-9 mol %) Zirconium Titanate nanoparticles (NPs) have been synthesized by the green solution combustion method using Aloe Vera gel extract as a reducing agent, followed by the calcination at 720 °C for 3hrs. All the synthesized samples crystallize in a pure orthorhombic crystal structure with the space group of Pbcn. The surface and bulk morphology were analyzed. The crystallite size increases, whereas the direct energy band gap was found to decrease with an increase in dopant concentration. Further, the effect of dopant concentration on the photoluminescence properties was studied. The presence of Eu3+ ion in the trivalent state in the host lattice was confirmed by its characteristic emission at 610 nm due to 5D0→7F2 (λex = 464 nm). The CIE coordinates were found in the red region of the CIE 1931 diagram. The CCT coordinates lie in the range 6288-7125 K. The Judd-Ofelt parameters and derived quantities were analyzed. This theory confirms the high symmetry of Eu3+ ions in the host lattice. These findings imply that ZTO:Eu3+ can be employed as a nanopowder material in a red-emitting phosphor material.


Assuntos
Luminescência , Nanopartículas , Zircônio , Difração de Raios X , Európio/química , Nanopartículas/química , Íons
3.
RSC Adv ; 13(22): 14782-14796, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37197183

RESUMO

In the present communication, ZrTiO4 nanoparticles (NPs) are synthesized by the solution combustion method using urea (ZTOU) and oxalyl dihydrazide (ODH) (ZTODH) as fuel and calcined at 700 °C. The synthesized samples were characterized with different techniques. Powder X-ray diffraction studies show the presence of diffraction peaks corresponding to ZrTiO4. In addition to these peaks, a few additional peaks corresponding to the monoclinic and cubic phases of ZrO2 and the rutile phase of TiO2 are observed. The surface morphology of ZTOU and ZTODH consists of nanorods with different lengths. The TEM and HRTEM images confirm the formation of nanorods along with NPs, and the estimated crystallite size matches well with that of PXRD. The direct energy band gap was calculated using Wood and Tauc's relation and was found to be 2.7 and 3.2 eV for ZTOU and ZTODH respectively. The photoluminescence emission peaks (λ = 350 nm), CIE and CCT of ZTOU and ZTODH clearly confirm that the present nanophosphor might be a good nanophosphor material for blue or aqua green light emitting diodes. Furthermore, antibacterial activity and a viability test were conducted on two food borne pathogens. The X-ray/gamma ray absorption properties are also studied, which clearly show the ZrTiO4 might be a good absorbing material. Furthermore, cyclic voltammetry (CV) analysis of ZTOU nanorods shows very good redox peaks compared to that of ZTODH. From the electrochemical impedance spectroscopy (EIS) measurements, the charge-transfer resistances for prepared nanorods ZTOU and ZTODH are found to be 151.6 Ω, and 184.5 Ω respectively. The modified graphite electrode with ZTOU shows good sensing activity for both paracetamol and ascorbic acid, compared to ZTODH.

4.
Materials (Basel) ; 13(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630747

RESUMO

Nanostructured NiO and Li-ion doped NiO have been synthesized via a facile microwave technique and simulated using the first principle method. The effects of microwaves on the morphology of the nanostructures have been studied by Field Emission Spectroscopy. X-ray diffraction studies confirm the nanosize of the particles and favoured orientations along the (111), (200) and (220) planes revealing the cubic structure. The optical band gap decreases from 3.3 eV (pure NiO) to 3.17 eV (NiO doped with 1% Li). Further, computational simulations have been performed to understand the optical behaviour of the synthesized nanoparticles. The optical properties of the doped materials exhibit violet, blue and green emissions, as evaluated using photoluminescence (PL) spectroscopy. In the presence of Li-ions, NiO nanoparticles exhibit enhanced electrical capacities and better cyclability. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results show that with 1% Li as dopant, there is a marked improvement in the reversibility and the conductance value of NiO. The results are encouraging as the synthesized nanoparticles stand a better chance of being used as an active material for electrochromic, electro-optic and supercapacitor applications.

5.
Luminescence ; 32(3): 414-424, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27620118

RESUMO

Cr3+ -doped Y2 O3 (0.5-9 mol%) was synthesized by a simple solution combustion method using Aloe vera gel as a fuel/surfactant. The final obtained product was calcined at 750°C for 3 h, which is the lowest temperature reported so far for the synthesis of this compound. The calcined product was confirmed for its crystallinity and purity by powder X-ray diffraction (PXRD) studies which showed a single-phase nano cubic phosphor. The particles size estimated by Scherrer formula was in the range of 6-19 nm. The UV-vis spectra showed absorption bands at 198, 272 and 372 nm having band gap energy in the range 4.00-4.26 eV. In order to investigate the possibility of its use in white light emitting display applications, the photoluminescence properties of Cr3+ -doped Y2 O3 nanophosphors were studied at an excitation wavelength in the near ultraviolet (UV) light region (361 nm). The emission spectra consisted of emission peaks in the blue (4 F9/2  â†’ 6 H15/2 ), orange (4 F9/2  â†’ 6 H13/2 ) and red (4 F9/2  â†’ 6 H11/2 ) regions. The CIE coordinates (0.33, 0.33) lie in the white light region. Hence Y2 O3 :Cr3+ can be used for white light-emitting diode (LED) applications.


Assuntos
Cromo/química , Nanopartículas/química , Oxigênio/química , Raios Ultravioleta , Ítrio/química , Luminescência , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 152: 404-16, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26241826

RESUMO

Green synthesis of multifunctional Zinc oxide nanoparticles (NPs) with a variety of morphologies were achieved by low temperature solution combustion route employing neem (Azadirachta indica) extract as fuel. The nanoparticles were characterized by PXRD, FTIR, XPS, Raman and UV-Visible spectroscopic studies. The Morphologies were studied by SEM and TEM analysis. The NPs were subjected for photoluminescence, photocatalytic, antibacterial and antioxidant activity studies. PXRD pattern confirmed the hexagonal wurtzite structure of the product. SEM images indicated the transformation of mushroom like hexagonal disks to bullets, buds, cones, bundles and closed pine cone structured NPs with increase in the concentration of neem extract in reaction mixture. The NPs exhibited prominent green emission due to the presence of intrinsic defect centers. The as-formed bullet shaped ZnO with 4ml of neem extract was found to decolorize Methylene blue (MB) under Sunlight and UV light irradiation. The antibacterial studies indicated that ZnO NPs of concentration 500, 750 and 1000µg resulted in significant antibacterial activity on Klebsiella aerogenes and Staphylococcus aureus but not against Escherichia coli and Pseudomonas aeruginosa in agar well diffusion method. Further, ZnO NPs exhibited significant antioxidant activity against scavenging DPPH free radicals. The current investigation demonstrated green engineering method for the synthesis of multifunctional ZnO NPs with interesting morphologies using neem extract.


Assuntos
Antibacterianos/química , Antioxidantes/química , Substâncias Luminescentes/química , Nanoestruturas/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Catálise , Enterobacter aerogenes/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Química Verde/métodos , Humanos , Substâncias Luminescentes/farmacologia , Nanoestruturas/ultraestrutura , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Raios Ultravioleta , Óxido de Zinco/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-26125993

RESUMO

The study reports green mediated combustion route for the synthesis of Tb(3+) ion activated Y2O3 nanophosphors using Aloe Vera gel as fuel. The concentration of Tb(3+) plays a key role in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Tb(3+) nanophosphors were characterized by PXRD, SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Tb(3+) ion concentration on structural morphology, UV-visible absorption and PL emission were investigated systematically. The PL emission of Y2O3: Tb(3+) (1-11 mol%) nanophosphors were studied in detail under 271 and 304nm excitation wavelengths. The CIE coordinates lies well within green region and correlated color temperature values were found to be 6221 and 5562K under different excitations. Thus, the present phosphor can serve as an excellent candidate for LEDs. Further, prismatic Y2O3: Tb(3+) (3 mol%) nanophosphor showed significant antibacterial activity against Pseudomonas desmolyticum and Staphylococcus aureus. The present study successfully demonstrates Y2O3: Tb(3+) nanophosphors can be used for display applications as well as in medical applications for controlling pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biomimética , Substâncias Luminescentes/farmacologia , Nanopartículas/química , Térbio/química , Ítrio/química , Antibacterianos/química , Cristalização , Luminescência , Substâncias Luminescentes/química , Microscopia Eletrônica de Transmissão , Temperatura , Difração de Raios X
8.
Artigo em Inglês | MEDLINE | ID: mdl-25985135

RESUMO

Facile and green route was employed for the synthesis of Y2O3:Dy(3+) (1-11 mol%) nanostructures (NSs) using Aloe vera gel as fuel. The formation of different morphologies of Y2O3:Dy(3+) NSs were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Dy(3+) ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of NSs were investigated. NSs exhibited an intense warm white emission with CIE chromaticity coordinates (0.32, 0.33) and average CCT value ∼5525 K which corresponds to vertical day light. The control of Dy(3+) ion on Y2O3 matrix influences the photocatalytic decolorization of Metanil Yellow as a model compound was evaluated. The enhanced photocatalytic activities of core shell structured Y2O3:Dy(3+) (1 mol%) was attributed to co-operation effect of dopant concentration, crystallite size, textural properties and capability for reducing electron-hole pair recombination. Further, the recycling catalytic ability of Y2O3:Dy(3+) (1 mol%) nanostructure was also evaluated and found promising photocatalytic performance with negligible decrease in decolorization efficiency even after sixth successive cyclic runs. Considering its green, facile synthesis and recyclable feature from an aqueous solution, the present Y2O3:Dy(3+) (1 mol%) nanophosphor can be considered as one of the ideal photocatalyst for various potential applications.


Assuntos
Disprósio/química , Química Verde/métodos , Luz , Nanoestruturas/química , Itérbio/química , Compostos Azo/química , Catálise , Corantes/química , Cristalização , Cinética , Luminescência , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Pós , Espectrofotometria Ultravioleta , Temperatura , Difração de Raios X
9.
Artigo em Inglês | MEDLINE | ID: mdl-25978012

RESUMO

Spherical shaped cerium dioxide (CeO2) nanoparticles (NPs) were synthesized via bio mediated route using Leucas aspera (LA) leaf extract. The NPs were characterized by PXRD, SEM, UV-Visible techniques. Photoluminescence (PL), photocatalysis and antibacterial properties of NPs were studied. PXRD patterns and Rietveld analysis confirm cubic fluorite structure with space group Fm-3m. SEM results evident that morphology of the NPs was greatly influenced by the concentration of LA leaf extract in the reaction mixture. The band gap energy of the NPs was found to be in the range of 2.98-3.4 eV. The photocatalytic activity of NPs was evaluated by decolorization of Rhodamine-B (RhB) under UVA and Sun light irradiation. CeO2 NPs show intense blue emission with CIE coordinates (0.14, 0.22) and average color coordinated temperature value ∼148,953 K. Therefore the present NPs quite useful for cool LEDs. The superior photocatalytic activity was observed for CeO2 NPs with 20 ml LA under both UVA and Sunlight irradiation. The enhanced photocatalytic activity and photoluminescent properties were attributed to defect induced band gap engineered CeO2 NPs. Further, CeO2 with 20 ml LA exhibit significant antibacterial activity against Escherichia coli (EC) and Staphylococcus aureus (SA). These findings show great promise of CeO2 NPs as multifunctional material for various applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cério/química , Cério/farmacologia , Nanopartículas/química , Catálise , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Corantes Fluorescentes/química , Humanos , Lamiaceae/química , Luz , Luminescência , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fotólise , Extratos Vegetais/química , Rodaminas/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
10.
Artigo em Inglês | MEDLINE | ID: mdl-25988816

RESUMO

MgO:Fe(3+) (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe(3+) ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe(3+) NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe(3+) on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe(3+) (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron-hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices.


Assuntos
Química Verde/métodos , Ferro/química , Luminescência , Óxido de Magnésio/química , Nanopartículas/química , Catálise , Cor , Cristalização , Sequestradores de Radicais Livres/química , Azul de Metileno/química , Nanopartículas/ultraestrutura , Pós , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Raios Ultravioleta , Difração de Raios X
11.
Artigo em Inglês | MEDLINE | ID: mdl-25767989

RESUMO

CeO2:Ho(3+) (1-9 mol%) nanopowders have been prepared by efficient and environmental friendly green combustion method using Aloe vera gel as fuel for the first time. The final products are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), fourier transform infrared (FTIR). Bell, urchin, core shell and flower like morphologies are observed with different concentrations of the A. vera gel. It is apparent that by adjusting the concentration of the gel, considerable changes in the formation of CeO2:Ho(3+) nano structures can be achieved. Photoluminescence (PL) studies show green (543, 548 nm) and red (645, 732 nm) emissions upon excited at 400 nm wavelength. The emission peaks at ∼526, 548, 655 and 732 nm are associated with the transitions of (5)F3→(5)I8, (5)S2→(5)I8, (5)F5→(5)I8 and (5)S2→(5)I7, respectively. Three TL glow peaks are observed at 118, 267 and 204°C for all the γ irradiated samples which specify the surface and deeper traps. Linear TL response in the range 0.1-2kGy shows that phosphor is fairly useful as γ radiation dosimeter. Kinetic parameters associated with the glow peaks are estimated using Chen's half width method. The CIE coordinate values show that phosphor is quite useful for the possible applications in WLEDs as orange red phosphor.


Assuntos
Cério/química , Raios gama , Química Verde/métodos , Hólmio/química , Luminescência , Nanopartículas/química , Aloe/química , Cristalização , Elétrons , Cinética , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pós , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Difração de Raios X
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 140: 516-23, 2015 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25638435

RESUMO

Mg2SiO4:Sm3+ (1-11 mol%) nanoparticles were prepared by a rapid low temperature solution combustion route. The powder X-ray diffraction (PXRD) patterns exhibit orthorhombic structure with α-phase. The average crystallite size estimated using Scherer's method, W-H plot and strain-size plots were found to be in the range 25-50 nm and the same was confirmed by Transmission Electron Microscopy (TEM). Scanning electron microscopy (SEM) pictures show porous structure and crystallites were agglomerated. The effect of Sm3+ cations on luminescence of Mg2SiO4 was well studied. Interestingly the samples could be effectively excited with 315 nm and emitted light in the red region, which was suitable for the demands of high efficiency WLEDs. The emission spectra consists of four main peaks which can be assigned to the intra 4-f orbital transitions of Sm3+ ions 4G5/2→6H5/2 (576 nm), 4G5/2→6H7/2 (611 nm), 4G5/2→6H9/2 (656 nm) and 4G5/2→6H11/2 (713 nm). The optimal luminescence intensity was obtained for 5 mol% Sm3+ ions. The CIE (Commission International de I'Eclairage) chromaticity co-ordinates were calculated from emission spectra, the values (0.588, 0.386) were close to the NTSC (National Television Standard Committee) standard value of red emission. Coordinated color temperature (CCT) was found to be 1756 K. Therefore optimized Mg2SiO4:Sm3+ (5 mol%) phosphor was quite useful for solid state lighting.


Assuntos
Substâncias Luminescentes/química , Nanoestruturas/química , Samário/química , Compostos de Silício/química , Luminescência , Nanoestruturas/ultraestrutura , Difração de Raios X
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 141: 149-60, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25668696

RESUMO

We report the synthesis of Y2O3: Eu(3+) (1-11 mol%) nanoparticles (NPs) with different morphologies via eco-friendly, inexpensive and simple low temperature solution combustion method using Aloe Vera gel as fuel. The formation of different morphologies of Y2O3: Eu(3+) NPs were characterized by PXRD, SEM, TEM, HRTEM, UV-Visible and PL techniques. The PXRD data and Rietveld analysis confirms the formation of single phase Y2O3 with cubic crystal structure. The influence of Eu(3+) ion concentration on the morphology, UV-Visible absorption, PL emission and photocatalytic activity of Y2O3: Eu(3+) nanostructures were investigated. Y2O3: Eu(3+) NPs exhibit intense red emission with CIE chromaticity coordinates (0.50, 0.47) and correlated color temperature values at different excitation ranges from 1868 to 2600 K. The control of Eu(3+) ion on Y2O3 matrix influences the photocatalytic decolorization of methylene blue (MB) as a model compound was evaluated under UVA light. Enhanced photocatalytic activity of conical shaped Y2O3: Eu(3+) (1 mol%) was attributed to dopant concentration, crystallite size, textural properties and capability of reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers followed the order SO4(2-)>Cl(-)>C2H5OH>HCO3(-)>CO3(2-). These findings show great promise of Y2O3: Eu(3+) NPs as a red phosphor in warm white LEDs as well as eco-friendly heterogeneous photocatalysis.


Assuntos
Biomimética/métodos , Európio/química , Química Verde , Luz , Substâncias Luminescentes/química , Nanoestruturas/química , Óxidos/química , Ítrio/química , Aloe/química , Catálise/efeitos da radiação , Corantes/química , Cristalização , Sequestradores de Radicais Livres/química , Géis/química , Cinética , Azul de Metileno/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Pós , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura , Difração de Raios X
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 356-65, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25448940

RESUMO

The study involves preparation of samarium doped Y2SiO5 (YSO) nano powders by solution combustion method using urea as a fuel for the first time. Effect of different fluxes on the crystallization behavior, morphology and photoluminescence (PL) properties of YSO:Sm(3+) (1-9 mol%) were investigated. The final product was characterized by Powder X-ray diffraction (PXRD), Scanning Electron Microscopy (SEM) and UV-Vis spectroscopy. The average crystallite size estimated by Debye-Scherer's and Williamson-Hall plots were found to be in the range of 10-50 nm. Samples calcined at 1100°C show pure monoclinic X1 phase; whereas, samples calcined at 1200 and 1300°C show pure X2 phase of YSO. Photoluminescence (PL) studies of Sm(3+) (1-9 mol%) doped YSO for near ultra violet (NUV) excitation (407 nm) was studied in order to investigate the possibility of its use in white light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm(3+), such as (4)G5/2→(6)H5/2 (∼560 nm), (4)G5/2→(6)H7/2 (600-613 nm), (4)G5/2→(6)H9/2 (∼650 nm), (4)G5/2→(6)H11/2 (715 nm) and (4)G5/2→(6)H13/2 (763 nm) respectively. The emission intensity of the phosphor was found to be enhancing after addition of fluxes. Further, the emission at 600-613 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for near ultra violet excitation.


Assuntos
Eletrônica , Luminescência , Nanopartículas/química , Óxidos/química , Samário/química , Silicatos/química , Compostos de Silício/química , Ítrio/química , Elétrons , Nanopartículas/ultraestrutura , Pós , Espectrometria de Fluorescência , Difração de Raios X
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 138: 857-65, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25434642

RESUMO

A simple and low-cost solution combustion method was used to prepare Eu(3+) (1-11mol%) doped Zn2TiO4 nanophosphors at 500°C using zinc nitrates as precursors and oxalyl di-hydrazide (ODH) as fuel. The final product was calcined at 1100°C for 3h and then characterized by powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-visible absorption (UV-Vis). The PXRD patterns of the sample calcined at 1100°C show pure cubic phase. The crystallite size was estimated using Scherrer's method and found to be in the range 20-25nm and the same was confirmed by TEM studies. Effects of Eu(3+) (1-11mol%) cations on the luminescence properties of Zn2TiO4 nanoparticles were studied. The samples exhibit intense red emission upon 395nm near ultra violet (NUV) excitation. The characteristic emission peaks recorded at ∼578, 592, 613 and 654nm may be attributed to the 4f-4f intra shell transitions ((5)D0→(7)Fj=0,1,2,3) of Eu(3+) cations. The CIE chromaticity co-ordinates and CCT were calculated from emission spectra and the values (x, y) were very close to NTSC standard values for red emission and CCT was close to Plankian locus. Therefore, the present phosphor may be highly useful for display applications.


Assuntos
Eletrônica , Európio/química , Luminescência , Nanopartículas/química , Raios Ultravioleta , Cristalização , Íons , Pós , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 241-51, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25068837

RESUMO

Novel crystalline tetragonal ZrO2: Eu(3+) phosphors were prepared by a facile and efficient low temperature solution combustion method at 400±10 °C using oxalyl dihydrazide (ODH) as fuel. The powder X-ray diffraction patterns and Rietveld confinement of as formed ZrO2: Eu(3+) (1-11 mol%) confirmed the presence of body centered tetragonal phase. The crystallite size estimated from Scherrer's and W-H plots was found to be in the range of 7-17 nm. These results were in good agreement with transmission electron microscopy studies. The calculated microstrain in most of the planes indicated the presence of tensile stress along various planes of the particles. The observed space group (P42/nmc) revealed the presence of cations in the 2b positions (0.75, 0.25, 0.25) and the anions in the 4d positions (0.25, 0.25, 0.45). The optical band gap energies estimated from Wood and Tauc's relation was found to be in the range 4.3-4.7 eV. Photoluminescence (PL) emission was recorded under 394 and 464 nm excitation shows an intense emission peak at 605 nm along with other emission peaks at 537, 592, 605 and 713 nm. These emission peaks were attributed to the transition of (5)D0→(7)FJ (J=0, 1, 2, 3) of Eu(3+) ions. The high ratio of Intensity of ((5)D0→(7)F2) and ((5)D0→(7)F1) infers that Eu(3+) occupies sites with a low symmetry and without an inversion center. CIE color coordinates indicated the red regions which could meet the needs of illumination devices.


Assuntos
Európio/química , Luminescência , Medições Luminescentes/métodos , Nanopartículas/química , Temperatura , Zircônio/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pós , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica , Difração de Raios X
17.
Artigo em Inglês | MEDLINE | ID: mdl-24992914

RESUMO

GdAlO3, GdAlO3:Eu(3+) and GdAlO3:Eu(3+):Bi(3+) nanophosphors were synthesised by solution combustion technique. Pure orthorhombic phase was obtained from powder X-ray diffraction (PXRD) studies. Scanning electron microscopy (SEM) micrographs showed the porous, agglomerated and irregular shaped particles. The particle size obtained by transmission electron microscopy (TEM) measurement was in good agreement with the values obtained by Debye Scherrer's and W-H plots. The selected area electron diffraction (SAED) pattern show single crystalline nature of the sample. Photoluminescence (PL) measurements were carried out for GdAlO3:Eu(3+) and GdAlO3:Eu(3+):Bi(3+) phosphors excited at a wavelength of 274nm. The characteristic emission peaks of Eu(3+) ions were recorded at 590, 614, 655 and 695nm corresponding to (5)D0→(7)FJ (J=1, 2, 3, 4) transitions respectively. However, with addition of Bi(3+) ions in GdAlO3:Eu(3+), PL intensity drastically enhanced. Orange red color was tuned to deep red color with the addition of Bi(3+) ions in GdAlO3:Eu(3+) phosphor. Therefore, the phosphor was highly useful as red component in WLEDs. A single well resoled glow peak at 225°C was recorded in GdAlO3 and GdAlO3:Eu(3+). Further, with addition of Bi(3+) ions, an additional peak at 300°C was recorded. TL glow curves of different UV-exposed GdAlO3:Eu(3+):Bi(3+) show two TL peaks at 207 and 300°C respectively. The 207°C peak show simple glow peak structure and its intensity increases linearly up to 25min and after that it decrease.


Assuntos
Alumínio/química , Bismuto/química , Európio/química , Gadolínio/química , Substâncias Luminescentes/química , Óxidos/química , Cátions/química , Luminescência , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 132: 256-62, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24873891

RESUMO

Cobalt copper ferrite nanopowders with composition Co1-xCuxFe2O4 (0.0≤x≤0.5) was synthesized by solution combustion method. The powder X-ray diffraction studies reveal the formation of single ferrite phase with particle size of ∼11-35 nm. Due to increase in electron density with in a material, X-ray density increase with increase of Cu2+ ions concentration. As Cu2+ ions concentration increases, saturation magnetization decreases from 38.5 to 26.7 emu g(-1). Further, the squareness ratio was found to be ∼0.31-0.46 which was well below the typical value 1, which indicates the existence of single domain isolated ferrimagnetic samples. The dielectric and electrical modulus was studied over a frequency range of 1 Hz to 1 MHz at room temperature using the complex impedance spectroscopy technique. Impedance plots showed only one semi-circle which corresponds to the contributions of grain boundaries. The lower values of dielectric loss at higher frequency region may be quite useful for high frequency applications such as microwave devices.


Assuntos
Cobalto/química , Cobre/química , Condutividade Elétrica , Compostos Ferrosos/química , Fenômenos Magnéticos , Nanopartículas/química , Impedância Elétrica , Íons , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 128: 891-901, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24709356

RESUMO

CaTiO3:Sm(3+) (1-11 mol%) nanophosphors were successfully synthesized by a low temperature solution combustion method [LCS]. The structural and morphological properties of the phosphors were studied by using Powder X-ray diffractometer (PXRD), Fourier transform infrared (FTIR), X-ray photo electron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM). TEM studies indicate that the size of the phosphor is ∼20-35 nm. Photoluminescence (PL) properties of Sm(3+) (1-11 mol%) doped CaTiO3 for NUV excitation (407 nm) was studied in order to investigate the possibility of its use in White light emitting diode (WLED) applications. The emission spectra consists of intra 4f transitions of Sm(3+), such as (4)G5/2→(6)H5/2 (561 nm), (4)G5/2→(6)H7/2 (601-611 nm), (4)G5/2→(6)H9/2 (648 nm) and (4)G5/2→(6)H11/2 (703 nm) respectively. Further, the emission at 601-611 nm show strong orange-red emission and can be applied to the orange-red emission of phosphor for the application for near ultra violet (NUV) excitation. Thermoluminescence (TL) of the samples irradiated with gamma source in the dose range 100-500 Gy was recorded at a heating rate of 5°Cs(-1). Two well resolved glow peaks at 164°C and 214°C along with shouldered peak at 186°C were recorded. TL intensity increases up to 300 Gy and thereafter, it decreases with further increase of dose. The kinetic parameters namely activation energy (E), frequency factor (s) and order of kinetics were estimated and results were discussed in detail.


Assuntos
Compostos de Cálcio/química , Luminescência , Metais Pesados/química , Nanopartículas/química , Óxidos/química , Samário/química , Titânio/química
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 127: 177-84, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24632171

RESUMO

Y(2)SiO(5) nanopowders are prepared by solution combustion method using DFH, sugar and urea as fuels. The final product was well characterized by powder X-ray diffraction, Scanning Electron Microscopy and UV-Vis spectroscopy. The average crystallite size was estimated using Debye-Scherer's formula and Williamson-Hall plots and are found to be in the range 34-40nm for DFH, 45-50nm for urea and 35-42nm for sugar respectively. X1-X2 type YSO phase was obtained for all the samples calcined from 1200 to 1400°C. The optical energy band gaps (Eg) of the samples were estimated from Tauc relation and varies from 5.58 to 5.60eV. SEM micrographs of sugar and urea used Y(2)SiO(5) show agglomerated particles with porous morphology. However, for the sample prepared using DFH fuel observed to be almost spherical in shape. Thermoluminescence (TL) properties of γ-irradiated (1-5kGy) and UV irradiated (1-30min) Y(2)SiO(5) nanopowder at a heating rate of 2.5°Cs(-1) was studied. The samples prepared by using urea and sugar fuels show a broad TL glow peak at 189°C. However, DFH used Y(2)SiO(5) show a well resolved peak at 196°C with shouldered peak at 189°C. Among the fuels, DFH used Y(2)SiO(5) show simple glow peak structure which perhaps useful in radiation dosimetry. This may be due to fuel and particle size effect. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics are estimated by Chens glow peak shape method.


Assuntos
Luminescência , Nanopartículas/química , Silicatos/química , Sacarose/química , Ureia/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...