Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 113: 110216, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39067654

RESUMO

PURPOSE: This study assessed the clinical classification performance of an R2*-based MRI technique for LIC quantification relative to FerriScan, with intra-patient FerriScan LIC uncertainty taken into account. The variabilities of R2* and FerriScan LIC were also assessed. MATERIALS AND METHODS: This was an ethics approved retrospective study, performed on patients undergoing chelation treatment for iron overload. 126 patients (69 women, 57 men), with an age of 42 +/- 16 years (range 19-86 years) were included. FerriScan and R2* MRI at 1.5 T were performed as part of a routine liver iron assessment protocol. For R2* MRI, a commercially available pulse sequence and reconstruction implementation was used, together with a previously derived calibration curve to convert R2* to LIC. Clinical classifications arising from R2*-derived LIC estimates were compared to those based on FerriScan. The accuracy and precision of the R2* technique was calculated. The variabilities of FerriScan- and R2*-derived estimates of LIC were compared with a Wilcoxon Signed Rank test. Significance was set at the 95% confidence level. RESULTS: The precision of R2* ranged from 0.59 to 0.92, with an overall accuracy of 72%. When intra-patient FerriScan LIC uncertainty was considered, precision and accuracy increased to >94% and 97% respectively. The R2*-LIC variability (=17%) was significantly lower than the FerriScan-LIC variability (34%) at the 95% confidence level (p < 10-3). CONCLUSION: MRI R2*-based LIC estimates provided a similar clinical classification as FerriScan. The intra-patient uncertainty of R2*-based LIC estimates was significantly lower than FerriScan.


Assuntos
Sobrecarga de Ferro , Ferro , Fígado , Imageamento por Ressonância Magnética , Humanos , Adulto , Masculino , Feminino , Sobrecarga de Ferro/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Fígado/diagnóstico por imagem , Fígado/metabolismo , Ferro/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem , Estudos Retrospectivos , Sensibilidade e Especificidade , Nanopartículas de Magnetita , Meios de Contraste
2.
Radiother Oncol ; 198: 110380, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38879128

RESUMO

BACKGROUND AND PURPOSE: Preclinical research demonstrated that the exposure of microbubbles (intravascular gas microspheres) to focussed ultrasound within the targeted tumour upregulates pro-apoptotic pathways and enhances radiation-induced tumour cell death. This study aimed to assess the safety and efficacy of magnetic resonance (MR)-guided focussed ultrasound-stimulated microbubbles (MRgFUS-MB) for head and neck cancers (HN). MATERIALS AND METHODS: This prospective phase 1 clinical trial included patients with newly diagnosed or recurrent HN cancer (except nasopharynx malignancies) for whom locoregional radiotherapy with radical- or palliative-intent as deemed appropriate. Patients with contraindications for microbubble administration or contrast-enhanced MR were excluded. MR-coupled focussed ultrasound sonicated intravenously administered microbubbles within the MR-guided target volume. Patients receiving 5-10 and 33-35 radiation fractions were planned for 2 and 3 MRgFUS-MB treatments, respectively. Primary endpoint was toxicity per CTCAEv5.0. Secondary endpoint was tumour response at 3 months per RECIST 1.1 criteria. RESULTS: Twelve patients were enrolled between Jun/2020 and Nov/2023, but 1 withdrew consent. Eleven patients were included in safety analysis. Median follow-up was 7 months (range, 0.3-38). Most patients had oropharyngeal cancer (55 %) and received 20-30 Gy/5-10 fractions (63 %). No systemic toxicity or MRgFUS-MB-related adverse events occurred. The most severe acute adverse events were radiation-related grade 3 toxicities in 6 patients (55 %; dermatitis in 3, mucositis in 1, dysphagia in 6). No radiation necrosis or grade 4/5 toxicities were reported. 8 patients were included in the 3-month tumour response assessment: 4 had partial response (50 %), 3 had complete response (37.5 %), and 1 had progressive disease (12.5 %). CONCLUSIONS: MRgFUS-MB treatment was safe and associated with high rates of tumour response at 3 months.


Assuntos
Neoplasias de Cabeça e Pescoço , Microbolhas , Humanos , Masculino , Microbolhas/uso terapêutico , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Imageamento por Ressonância Magnética , Adulto
3.
PLoS Med ; 21(5): e1004408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38758967

RESUMO

BACKGROUND: Preclinical studies have demonstrated that tumour cell death can be enhanced 10- to 40-fold when radiotherapy is combined with focussed ultrasound-stimulated microbubble (FUS-MB) treatment. The acoustic exposure of microbubbles (intravascular gas microspheres) within the target volume causes bubble cavitation, which induces perturbation of tumour vasculature and activates endothelial cell apoptotic pathways responsible for the ablative effect of stereotactic body radiotherapy. Subsequent irradiation of a microbubble-sensitised tumour causes rapid increased tumour death. The study here presents the mature safety and efficacy outcomes of magnetic resonance (MR)-guided FUS-MB (MRgFUS-MB) treatment, a radioenhancement therapy for breast cancer. METHODS AND FINDINGS: This prospective, single-center, single-arm Phase 1 clinical trial included patients with stages I-IV breast cancer with in situ tumours for whom breast or chest wall radiotherapy was deemed adequate by a multidisciplinary team (clinicaltrials.gov identifier: NCT04431674). Patients were excluded if they had contraindications for contrast-enhanced MR or microbubble administration. Patients underwent 2 to 3 MRgFUS-MB treatments throughout radiotherapy. An MR-coupled focussed ultrasound device operating at 800 kHz and 570 kPa peak negative pressure was used to sonicate intravenously administrated microbubbles within the MR-guided target volume. The primary outcome was acute toxicity per Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Secondary outcomes were tumour response at 3 months and local control (LC). A total of 21 female patients presenting with 23 primary breast tumours were enrolled and allocated to intervention between August/2020 and November/2022. Three patients subsequently withdrew consent and, therefore, 18 patients with 20 tumours were included in the safety and LC analyses. Two patients died due to progressive metastatic disease before 3 months following treatment completion and were excluded from the tumour response analysis. The prescribed radiation doses were 20 Gy/5 fractions (40%, n = 8/20), 30 to 35 Gy/5 fractions (35%, n = 7/20), 30 to 40 Gy/10 fractions (15%, n = 3/20), and 66 Gy/33 fractions (10%, n = 2/20). The median follow-up was 9 months (range, 0.3 to 29). Radiation dermatitis was the most common acute toxicity (Grade 1 in 16/20, Grade 2 in 1/20, and Grade 3 in 2/20). One patient developed grade 1 allergic reaction possibly related to microbubbles administration. At 3 months, 18 tumours were evaluated for response: 9 exhibited complete response (50%, n = 9/18), 6 partial response (33%, n = 6/18), 2 stable disease (11%, n = 2/18), and 1 progressive disease (6%, n = 1/18). Further follow-up of responses indicated that the 6-, 12-, and 24-month LC rates were 94% (95% confidence interval [CI] [84%, 100%]), 88% (95% CI [75%, 100%]), and 76% (95% CI [54%, 100%]), respectively. The study's limitations include variable tumour sizes and dose fractionation regimens and the anticipated small sample size typical for a Phase 1 clinical trial. CONCLUSIONS: MRgFUS-MB is an innovative radioenhancement therapy associated with a safe profile, potentially promising responses, and durable LC. These results warrant validation in Phase 2 clinical trials. TRIAL REGISTRATION: clinicaltrials.gov, identifier NCT04431674.


Assuntos
Neoplasias da Mama , Microbolhas , Humanos , Neoplasias da Mama/radioterapia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Microbolhas/uso terapêutico , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Adulto , Resultado do Tratamento , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais
4.
J Family Med Prim Care ; 6(3): 674-676, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29417033

RESUMO

Abdominal cocoon is one of the rare causes of intestinal obstruction. It is referred as complete or partial small bowel encapsulation caused by the thick fibrocollagenous membrane. It is most common in young adolescent girls. We present a 40-year-old male patient with idiopathic abdominal cocoon. Few cases of male patients suffering from idiopathic abdominal cocoon have been reported in literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA