Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(8): 3561-3574, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37655329

RESUMO

WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,ß-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.

2.
Chemistry ; 25(72): 16515-16518, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31596972

RESUMO

A discrete acyl carrier protein (ACP) bearing a photolabile nonhydrolysable carba(dethia) malonyl pantetheine cofactor was chemoenzymatically prepared and utilised for the trapping of biosynthetic polyketide intermediates following light activation. From the in vitro assembly of the polyketides SEK4 and SEK4b, by the type II actinorhodin "minimal" polyketide synthase (PKS), a range of putative ACP-bound diketides, tetraketides, pentaketides and hexaketides were identified and characterised by FT-ICR-MS, providing direct insights on active site accessibility and substrate processing for this enzyme class.

3.
Nat Chem Biol ; 14(3): 270-275, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29309054

RESUMO

Modular polyketide synthases (PKSs) produce numerous structurally complex natural products that have diverse applications in medicine and agriculture. PKSs typically consist of several multienzyme subunits that utilize structurally defined docking domains (DDs) at their N and C termini to ensure correct assembly into functional multiprotein complexes. Here we report a fundamentally different mechanism for subunit assembly in trans-acyltransferase (trans-AT) modular PKSs at the junction between ketosynthase (KS) and dehydratase (DH) domains. This mechanism involves direct interaction of a largely unstructured docking domain (DD) at the C terminus of the KS with the surface of the downstream DH. Acyl transfer assays and mechanism-based crosslinking established that the DD is required for the KS to communicate with the acyl carrier protein appended to the DH. Two distinct regions for binding of the DD to the DH were identified using NMR spectroscopy, carbene footprinting, and mutagenesis, providing a foundation for future elucidation of the molecular basis for interaction specificity.


Assuntos
Liases/química , Policetídeo Sintases/química , Ligação Proteica , Proteína de Transporte de Acila/química , Aciltransferases/química , Bactérias/enzimologia , Reagentes de Ligações Cruzadas/química , Hidroliases/química , Espectroscopia de Ressonância Magnética , Cadeias de Markov , Metano/análogos & derivados , Metano/química , Mutagênese , Filogenia , Domínios Proteicos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA