Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
CRISPR J ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770737

RESUMO

CRISPR-Cas technology has transformed our ability to introduce targeted modifications, allowing unconventional animal models such as pigs to model human diseases and improve its value for food production. The main concern with using the technology is the possibility of introducing unwanted modifications in the genome. In this study, we illustrate a pipeline to comprehensively identify off-targeting events on a global scale in the genome of three different gene-edited pig models. Whole genome sequencing paired with an off-targeting prediction software tool filtered off-targeting events amongst natural variations present in gene-edited pigs. This pipeline confirmed two known off-targeting events in IGH knockout pigs, AR and RBFOX1, and identified other presumably off-targeted loci. Independent validation of the off-targeting events using other gene-edited DNA confirmed two novel off-targeting events in RAG2/IL2RG knockout pig models. This unique strategy offers a novel tool to detect off-targeting events in genetically heterogeneous species after genome editing.

2.
World J Oncol ; 15(2): 149-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545477

RESUMO

Pigs are playing an increasingly vital role as translational biomedical models for studying human pathophysiology. The annotation of the pig genome was a huge step forward in translatability of pigs as a biomedical model for various human diseases. Similarities between humans and pigs in terms of anatomy, physiology, genetics, and immunology have allowed pigs to become a comprehensive preclinical model for human diseases. With a diverse range, from craniofacial and ophthalmology to reproduction, wound healing, musculoskeletal, and cancer, pigs have provided a seminal understanding of human pathophysiology. This review focuses on the current research using pigs as preclinical models for cancer research and highlights the strengths and opportunities for studying various human cancers.

3.
Anim Reprod Sci ; 264: 107452, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522133

RESUMO

Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.


Assuntos
Citocinas , Prostaglandinas , Animais , Feminino , Gravidez , Suínos/fisiologia , Prostaglandinas/metabolismo , Citocinas/metabolismo , Citocinas/genética , Hormônios Esteroides Gonadais/metabolismo , Prenhez/fisiologia
4.
Trends Cancer ; 10(3): 182-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290969

RESUMO

Cancer remains a leading cause of morbidity and mortality, and a paradigm shift is needed to fundamentally revisit drug development efforts. Pigs share close similarities to humans and may serve as an alternative model. Recently, a transgenic 'Oncopig' line has been generated to induce solid tumors with organ specificity, opening the potential of Oncopigs as a platform for developing novel therapeutic regimens.


Assuntos
Neoplasias , Animais , Suínos , Humanos , Modelos Animais de Doenças , Animais Geneticamente Modificados , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293027

RESUMO

Proteolytic activation of the hemagglutinin (HA) glycoprotein by host cellular proteases is pivotal for influenza A virus (IAV) infectivity. Highly pathogenic avian influenza viruses possess the multibasic cleavage site of the HA which is cleaved by ubiquitous proteases, such as furin; in contrast, the monobasic HA motif is recognized and activated by trypsin-like proteases, such as the transmembrane serine protease 2 (TMPRSS2). Here, we aimed to determine the effects of TMPRSS2 on the replication of pandemic H1N1 and H3N2 subtype IAVs in the natural host, the pig. The use of the CRISPR/Cas 9 system led to the establishment of homozygous gene edited (GE) TMPRSS2 knockout (KO) pigs. Delayed IAV replication was demonstrated in primary respiratory cells of KO pigs in vitro. IAV infection in vivo resulted in significant reduction of virus shedding in the upper respiratory tract, and lower virus titers and pathological lesions in the lower respiratory tract of TMPRSS2 KO pigs as compared to WT pigs. Our findings could support the commercial use of GE pigs to minimize (i) the economic losses caused by IAV infection in pigs, and (ii) the emergence of novel IAVs with pandemic potential through genetic reassortment in the "mixing vessel", the pig.

6.
Reprod Domest Anim ; 58(12): 1770-1772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873995

RESUMO

COVID-19 impacted abattoirs worldwide. The processing lines became a hotspot for the spread of COVID-19 resulting in plant restructuring and ultimately a critical loss of pig material for research. Commercial sources of pig oocytes are available but are costly and companies were already operating at a maximum capacity for supplying the oocyte needs around the United States. Here, we provide an alternative source of oocytes that are competent to produce live, healthy piglets.


Assuntos
COVID-19 , Doenças dos Suínos , Feminino , Animais , Suínos , Ovário , Folículo Ovariano , Oócitos , Recuperação de Oócitos/veterinária , COVID-19/veterinária , Células do Cúmulo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos
7.
Hum Reprod ; 38(10): 1938-1951, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37608600

RESUMO

STUDY QUESTION: Does a chemically defined maturation medium supplemented with FGF2, LIF, and IGF1 (FLI) improve in vitro maturation (IVM) of cumulus-oocyte complexes (COCs) obtained from children, adolescents, and young adults undergoing ovarian tissue cryopreservation (OTC)? SUMMARY ANSWER: Although FLI supplementation did not increase the incidence of oocyte meiotic maturation during human IVM, it significantly improved quality outcomes, including increased cumulus cell expansion and mitogen-activated protein kinase (MAPK) expression as well as enhanced transzonal projection retraction. WHAT IS KNOWN ALREADY: During OTC, COCs, and denuded oocytes from small antral follicles are released into the processing media. Recovery and IVM of these COCs is emerging as a complementary technique to maximize the fertility preservation potential of the tissue. However, the success of IVM is low, especially in the pediatric population. Supplementation of IVM medium with FLI quadruples the efficiency of pig production through improved oocyte maturation, but whether a similar benefit occurs in humans has not been investigated. STUDY DESIGN, SIZE, DURATION: This study enrolled 75 participants between January 2018 and December 2021 undergoing clinical fertility preservation through the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago. Participants donated OTC media, accumulated during tissue processing, for research. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants who underwent OTC and include a pediatric population that encompassed children, adolescents, and young adults ≤22 years old. All participant COCs and denuded oocytes were recovered from media following ovarian tissue processing. IVM was then performed in either a standard medium (oocyte maturation medium) or one supplemented with FLI (FGF2; 40 ng/ml, LIF; 20 ng/ml, and IGF1; 20 ng/ml). IVM outcomes included meiotic progression, cumulus cell expansion, transzonal projection retraction, and detection of MAPK protein expression. MAIN RESULTS AND THE ROLE OF CHANCE: The median age of participants was 6.3 years, with 65% of them classified as prepubertal by Tanner staging. Approximately 60% of participants had been exposed to chemotherapy and/or radiation prior to OTC. On average 4.7 ± 1 COCs and/or denuded oocytes per participant were recovered from the OTC media. COCs (N = 41) and denuded oocytes (N = 29) were used for IVM (42 h) in a standard or FLI-supplemented maturation medium. The incidence of meiotic maturation was similar between cohorts (COCs: 25.0% vs 28.6% metaphase II arrested eggs in Control vs FLI; denuded oocytes: 0% vs 5.3% in Control vs FLI). However, cumulus cell expansion was 1.9-fold greater in COCs matured in FLI-containing medium relative to Controls and transzonal projection retraction was more pronounced (2.45 ± 0.50 vs 1.16 ± 0.78 projections in Control vs FLIat 16 h). Additionally, MAPK expression was significantly higher in cumulus cells obtained from COCs matured in FLI medium for 16-18 h (chemiluminescence corrected area 621,678 vs 2,019,575 a.u., P = 0.03). LIMITATIONS, REASONS FOR CAUTION: Our samples are from human participants who exhibited heterogeneity with respect to age, diagnosis, and previous treatment history. Future studies with larger sample sizes, including adult participants, are warranted to determine the mechanism by which FLI induces MAPK expression and activation. Moreover, studies that evaluate the developmental competence of eggs derived from FLI treatment, including assessment of embryos as outcome measures, will be required prior to clinical translation. WIDER IMPLICATIONS OF THE FINDINGS: FLI supplementation may have a conserved beneficial effect on IVM for children, adolescents, and young adults spanning the agricultural setting to clinical fertility preservation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Department of Obstetrics and Gynecology startup funds (F.E.D.), Department of Surgery Faculty Practice Plan Grant and the Fertility & Hormone Preservation & Restoration Program at the Ann & Robert H. Lurie Children's Hospital of Chicago (M.M.L. and E.E.R.). M.M.L. is a Gesualdo Foundation Research Scholar. Y.Y.'s research is supported by the internal research funds provided by Colorado Center of Reproductive Medicine. Y.Y., L.D.S., R.M.R., and R.S.P. have a patent pending for FLI. The remaining authors have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Técnicas de Maturação in Vitro de Oócitos , Gravidez , Feminino , Adolescente , Humanos , Criança , Animais , Suínos , Adulto Jovem , Adulto , Fator 2 de Crescimento de Fibroblastos/metabolismo , Oócitos/metabolismo , Hormônios , Suplementos Nutricionais , Fator de Crescimento Insulin-Like I/metabolismo
8.
Reproduction ; 166(4): 263-269, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490351

RESUMO

In brief: Aromatase catalyzes the synthesis of estrogens and has been shown to have an important role during the establishment of pregnancy in the pig. This study confirmed the differential expression of the three aromatase isoforms. Abstract: Although three porcine aromatase isoforms have been identified, their gene expression profiles in reproduction are still poorly understood. Here, we identified by Sanger sequencing unique nucleotide signatures for the three paralogous copies of Cyp19 and analyzed by RT-PCR the occurrence of the Cyp19 and Cyp17a1 transcripts at different tissues and stages of conceptus and fetal-placental development. Cyp19a1 and Cyp19a3 expressions were detected in conceptuses and gonads, respectively. Cyp19a2 transcripts were identified on both the conceptuses and the placenta samples. Transcripts for Cyp17a1 were detected predominantly in conceptus and gonads. In the endometrium of day 21 pregnant females, as well as days 12 and 17 pseudopregnant females, we did not detect the expression of Cyp19a1, Cyp19a2, or Cyp19a3. In our study, we have demonstrated distinct transcriptional regulation for the three functional Cyp19 paralogs and a potential role for Cyp17a1 in controlling the secretion of estrogen from the conceptus and the placenta.


Assuntos
Aromatase , Placenta , Gravidez , Animais , Feminino , Suínos , Placenta/metabolismo , Aromatase/genética , Aromatase/metabolismo , Estrogênios/metabolismo , Embrião de Mamíferos/metabolismo , Gônadas/metabolismo
9.
J Cardiovasc Dev Dis ; 10(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37367419

RESUMO

A transgenic strain of pigs was created to express green fluorescent protein (GFP) ubiquitously using a pCAGG promoter. Here, we characterize GFP expression in the semilunar valves and great arteries of GFP-transgenic (GFP-Tg) pigs. Immunofluorescence was performed to visualize and quantify GFP expression and colocalization with nuclear staining. GFP expression was confirmed in both the semilunar valves and great arteries of GFP-Tg pigs compared to wild-type tissues (aorta, p = 0.0002; pulmonary artery, p = 0.0005; aortic valve; and pulmonic valve, p < 0.0001). The quantification of GFP expression in cardiac tissue allows this strain of GFP-Tg pigs to be used for future research in partial heart transplantation.

10.
Biol Reprod ; 108(4): 611-618, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36648449

RESUMO

Growth differentiation factor 9 (GDF9) is a secreted protein belonging to the transforming growth factor beta superfamily and has been well characterized for its role during folliculogenesis in the ovary. Although previous studies in mice and sheep have shown that mutations in GDF9 disrupt follicular progression, the exact role of GDF9 in pigs has yet to be elucidated. The objective of this study was to understand the role of GDF9 in ovarian function by rapidly generating GDF9 knockout (GDF9-/-) pigs by using the CRISPR/Cas9 system. Three single-guide RNAs designed to disrupt porcine GDF9 were injected with Cas9 mRNA into zygotes, and blastocyst-stage embryos were transferred into surrogates. One pregnancy was sacrificed on day 100 of gestation to investigate the role of GDF9 during oogenesis. Four female fetuses were recovered with one predicted to be GDF9-/- and the others with in-frame mutations. All four had fully formed oocytes within primordial follicles, confirming that knockout of GDF9 does not disrupt oogenesis. Four GDF9 mutant gilts were generated and were grown past puberty. One gilt was predicted to completely lack functional GDF9 (GDF9-/-), and the gilt never demonstrated standing estrus and had a severely underdeveloped reproductive tract with large ovarian cysts. Further examination revealed that the follicles from the GDF9-/- gilt did not progress past preantral stages, and the uterine vasculature was less extensive than the control pigs. By using the CRISPR/Cas9 system, we demonstrated that GDF9 is a critical growth factor for proper ovarian development and function in pigs.


Assuntos
Fator 9 de Diferenciação de Crescimento , Folículo Ovariano , Animais , Feminino , Camundongos , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Maturidade Sexual , Ovinos , Suínos
11.
Mol Reprod Dev ; 90(7): 459-468, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736243

RESUMO

CRISPR-Cas9 gene editing technology provides a method to generate loss-of-function studies to investigate, in vivo, the specific role of specific genes in regulation of reproduction. With proper design and selection of guide RNAs (gRNA) designed to specifically target genes, CRISPR-Cas9 gene editing allows investigation of factors proposed to regulate biological pathways involved with establishment and maintenance of pregnancy. The advantages and disadvantages of using the current gene editing technology in a large farm species is discussed. CRISPR-Cas9 gene editing of porcine conceptuses has generated new perspectives for the regulation of endometrial function during the establishment of pregnancy. The delicate orchestration of conceptus factors facilitates an endometrial proinflammatory response while regulating maternal immune cell migration and expansion at the implantation site is essential for establishment and maintenance of pregnancy. Recent developments and use of endometrial epithelial "organoids" to study endometrial function in vitro provides a future method to screen and target specific endometrial genes as an alternative to generating a gene edited animal model. With continuing improvements in gene editing technology, future researchers will be able to design studies to enhance our knowledge of mechanisms essential for early development and survival of the conceptus.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Gravidez , Feminino , Animais , Suínos/genética , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Reprodução/genética , Endométrio/metabolismo
12.
Sci Rep ; 12(1): 16245, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171243

RESUMO

The pig is an ideal model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Further, advances in CRISPR gene editing have made genetically engineered pigs viable models for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here we describe normal development of the pig abdominal system and show examples of congenital defects that can arise in CRISPR gene edited SAP130 mutant pigs. Normal pigs at different gestational ages from day 20 (D20) to term were examined and the configuration of the abdominal organs was studied using 3D histological reconstructions with episcopic confocal microscopy, magnetic resonance imaging (MRI) and necropsy. This revealed prominent mesonephros, a transient embryonic organ present only during embryogenesis, at D20, while the developing metanephros that will form the permanent kidney are noted at D26. By D64 the mesonephroi are absent and only the metanephroi remain. The formation of the liver and pancreas was observed by D20 and complete by D30 and D35 respectively. The spleen and adrenal glands are first identified at D26 and completed by D42. The developing bowel and the gonads are identified at D20. The bowel appears completely rotated by D42, and testes in the male were descended at D64. This atlas and the methods used are excellent tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development.


Assuntos
Edição de Genes , Rim , Abdome/diagnóstico por imagem , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Engenharia Genética , Humanos , Masculino , Suínos
13.
CABI Agric Biosci ; 3(1): 41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755158

RESUMO

Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.

14.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L842-L852, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438004

RESUMO

Morbidity and mortality of respiratory diseases are linked to airway obstruction by mucus but there are still no specific, safe, and effective drugs to correct this phenotype. The need for better treatment requires a new understanding of the basis for mucus production. In that regard, studies of human airway epithelial cells in primary culture show that a mucin granule constituent known as chloride channel accessory 1 (CLCA1) is required for inducible expression of the inflammatory mucin MUC5AC in response to potent type 2 cytokines. However, it remained uncertain whether CLCLA1 is necessary for mucus production in vivo. Conventional approaches to functional biology using targeted gene knockout were difficult due to the functional redundancy of additional Clca genes in mice not found in humans. We reasoned that CLCA1 function might be better addressed in pigs that maintain the same four-member CLCA gene locus and the corresponding mucosal and submucosal populations of mucous cells found in humans. Here we develop to our knowledge the first CLCA1-gene-deficient (CLCA1-/-) pig and show that these animals exhibit loss of MUC5AC+ mucous cells throughout the airway mucosa of the lung without affecting comparable cells in the tracheal mucosa or MUC5B+ mucous cells in submucosal glands. Similarly, CLCA1-/- pigs exhibit loss of MUC5AC+ mucous cells in the intestinal mucosa without affecting MUC2+ mucous cells. These data establish CLCA1 function for controlling MUC5AC expression as a marker of mucus production and provide a new animal model to study mucus production at respiratory and intestinal sites.


Assuntos
Canais de Cloreto , Mucina-5AC , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Pulmão/metabolismo , Camundongos , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Mucosa Respiratória/metabolismo , Suínos
15.
Sci Rep ; 12(1): 5009, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322150

RESUMO

Senecavirus A (SVA) is a cause of vesicular disease in pigs, and infection rates are rising within the swine industry. Recently, anthrax toxin receptor 1 (ANTXR1) was revealed as the receptor for SVA in human cells. Herein, the role of ANTXR1 as a receptor for SVA in pigs was investigated by CRISPR/Cas9 genome editing. Strikingly, ANTXR1 knockout (KO) pigs exhibited features consistent with the rare disease, GAPO syndrome, in humans. Fibroblasts from wild type (WT) pigs supported replication of SVA; whereas, fibroblasts from KO pigs were resistant to infection. During an SVA challenge, clinical symptoms, including vesicular lesions, and circulating viremia were present in infected WT pigs but were absent in KO pigs. Additional ANTXR1-edited piglets were generated that were homozygous for an in-frame (IF) mutation. While IF pigs presented a GAPO phenotype similar to the KO pigs, fibroblasts showed mild infection, and circulating SVA nucleic acid was decreased in IF compared to WT pigs. Thus, this new ANTXR1 mutation resulted in decreased permissiveness of SVA in pigs. Overall, genetic disruption of ANTXR1 in pigs provides a unique model for GAPO syndrome and prevents circulating SVA infection and clinical symptoms, confirming that ANTXR1 acts as a receptor for the virus.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Alopecia , Animais , Anodontia , Transtornos do Crescimento , Atrofias Ópticas Hereditárias , Fenótipo , Picornaviridae/genética , Doenças Raras , Receptores de Peptídeos , Suínos
16.
PLoS One ; 16(11): e0260052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784395

RESUMO

Diagnosis and surveillance of pathogenic Leptospira is difficult as organisms may be intermittently shed and in small numbers. Therefore, serologic testing by the microscopic agglutination test (MAT) is the primary screening method for leptospirosis. While a MAT titer ≥1:100 is considered to be a positive result, interpretation is complicated by the use of commercial vaccines in pigs. Most guidelines for interpretation of MAT titers in pigs were published in the 1970's and 1980's, prior to the development of the current multivalent vaccines. We evaluated MAT titers in routinely vaccinated healthy research pigs compared to their unvaccinated cohorts. Our study confirmed previous reports that the Pomona serovar elicits minimal antibody response even after a second booster 6 months after initial vaccination. However, MAT titers of ≥1:3,200 were detected as early as 4 weeks post initial vaccination for serovars Bratislava and Icterohaemorrhagiae and remained as high as ≥1:1,600 prior to booster at 24 weeks post vaccination. Our study determined that high levels of MAT titers can occur from vaccination alone and high titers are not necessarily indicative of infection. Therefore, the interpretation of MAT titers as indicators of Leptospira infection should be readdressed.


Assuntos
Leptospira/imunologia , Leptospirose/veterinária , Doenças dos Suínos/imunologia , Vacinas Combinadas/administração & dosagem , Testes de Aglutinação , Animais , Leptospirose/diagnóstico , Leptospirose/imunologia , Vigilância da População , Guias de Prática Clínica como Assunto , Sorogrupo , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia , Vacinação/veterinária , Vacinas Combinadas/imunologia
17.
Biol Reprod ; 105(6): 1577-1590, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34608481

RESUMO

Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG-/- conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells, which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG-/- conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG-/- embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1), and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs.


Assuntos
Embrião de Mamíferos/metabolismo , Interferon gama/metabolismo , Prenhez/metabolismo , Sus scrofa/embriologia , Animais , Desenvolvimento Embrionário , Feminino , Gravidez
18.
Cells ; 10(10)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685749

RESUMO

Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.


Assuntos
Embrião de Mamíferos/fisiologia , Criação de Embriões para Pesquisa/métodos , Suínos/embriologia , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos
19.
Biol Reprod ; 105(5): 1104-1113, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453429

RESUMO

Elongation of pig conceptuses is a dynamic process, requiring adequate nutrient provisions. Glutamine is used as an energy substrate and is involved in the activation of mechanistic target of rapamycin complex 1 (mTORC1) during porcine preimplantation development. However, the roles of glutamine have not been extensively studied past the blastocyst stage. Therefore, the objective of the current study was to determine if glutaminase (GLS), which is the rate-limiting enzyme in glutamine metabolism, was necessary for conceptus elongation to proceed and was involved in mTORC1 activation. The CRISPR/Cas9 system was used to induce loss-of-function mutations in the GLS gene of porcine fetal fibroblasts. Wild type (GLS+/+) and knockout (GLS-/-) fibroblasts were used as donor cells for somatic cell nuclear transfer, and GLS+/+ and GLS-/- blastocyst-stage embryos were transferred into surrogates. On day 14 of gestation, GLS+/+ conceptuses primarily demonstrated filamentous morphologies, and GLS-/- conceptuses exhibited spherical, ovoid, tubular, and filamentous morphologies. Thus, GLS-/- embryos were able to elongate despite the absence of GLS protein and minimal enzyme activity. Furthermore, spherical GLS-/- conceptuses had increased abundance of transcripts related to glutamine and glutamate metabolism and transport compared to filamentous conceptuses of either genotype. Differences in phosphorylation of mTORC1 components and targets were not detected regarding conceptus genotype or morphology, but abundance of two transcriptional targets of mTORC1, cyclin D1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha was increased in spherical conceptuses. Therefore, porcine GLS is not essential for conceptus elongation and is not required for mTORC1 activation at this developmental timepoint.


Assuntos
Blastocisto/metabolismo , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Glutaminase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Sus scrofa/embriologia , Animais , Transferência Embrionária , Embrião de Mamíferos/enzimologia , Feminino , Glutaminase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
20.
J Am Heart Assoc ; 10(14): e021631, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34219463

RESUMO

Background Modeling cardiovascular diseases in mice has provided invaluable insights into the cause of congenital heart disease. However, the small size of the mouse heart has precluded translational studies. Given current high-efficiency gene editing, congenital heart disease modeling in other species is possible. The pig is advantageous given its cardiac anatomy, physiology, and size are similar to human infants. We profiled pig cardiovascular development and generated genetically edited pigs with congenital heart defects. Methods and Results Pig conceptuses and fetuses were collected spanning 7 stages (day 20 to birth at day 115), with at least 3 embryos analyzed per stage. A combination of magnetic resonance imaging and 3-dimensional histological reconstructions with episcopic confocal microscopy were conducted. Gross dissections were performed in late-stage or term fetuses by using sequential segmental analysis of the atrial, ventricular, and arterial segments. At day 20, the heart has looped, forming a common atria and ventricle and an undivided outflow tract. Cardiac morphogenesis progressed rapidly, with atrial and outflow septation evident by day 26 and ventricular septation completed by day 30. The outflow and atrioventricular cushions seen at day 20 undergo remodeling to form mature valves, a process continuing beyond day 42. Genetically edited pigs generated with mutation in chromatin modifier SAP130 exhibited tricuspid dysplasia, with tricuspid atresia associated with early embryonic lethality. Conclusions The major events in pig cardiac morphogenesis are largely complete by day 30. The developmental profile is similar to human and mouse, indicating gene edited pigs may provide new opportunities for preclinical studies focused on outcome improvements for congenital heart disease.


Assuntos
Cardiopatias Congênitas/embriologia , Coração/embriologia , Organogênese/fisiologia , Animais , Modelos Animais de Doenças , Imagem Cinética por Ressonância Magnética/métodos , Microscopia Confocal , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...