Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Alzheimers Dement ; 20(5): 3687-3695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574400

RESUMO

INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doenças de Pequenos Vasos Cerebrais , Hipocampo , Tomografia por Emissão de Pósitrons , Humanos , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Masculino , Idoso , Feminino , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Atrofia/patologia , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Neuroimagem , Estudos de Coortes
2.
Artigo em Inglês | MEDLINE | ID: mdl-38613553

RESUMO

Microvascular injury immediately following reperfusion therapy in acute myocardial infarction (MI) has emerged as a driving force behind major adverse cardiovascular events in the postinfarction period. Although postmortem investigations and animal models have aided in developing early understanding of microvascular injury following reperfusion, imaging, particularly serial noninvasive imaging, has played a central role in cultivating critical knowledge of progressive damage to the myocardium from the onset of microvascular injury to months and years after in acute MI patients. This review summarizes the pathophysiological features of microvascular injury and downstream consequences, and the contributions noninvasive imaging has imparted in the development of this understanding. It also highlights the interventional trials that aim to mitigate the adverse consequences of microvascular injury based on imaging, identifies potential future directions of investigations to enable improved detection of disease, and demonstrates how imaging stands to play a major role in the development of novel therapies for improved management of acute MI patients.

3.
Can J Cardiol ; 40(1): 1-14, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37906238

RESUMO

Myocardial infarction (MI) remains a leading cause of morbidity and mortality. In atherothrombotic MI (ST-elevation MI and type 1 non-ST-elevation MI), coronary artery occlusion leads to ischemia. Subsequent cardiomyocyte necrosis evolves over time as a wavefront within the territory at risk. The spectrum of ischemia and reperfusion injury is wide: it can be minimal in aborted MI or myocardial necrosis can be large and complicated by microvascular obstruction and reperfusion hemorrhage. Established risk scores and infarct classifications help with patient management but do not consider tissue injury characteristics. This document outlines the Canadian Cardiovascular Society classification of acute MI. It is an expert consensus formed on the basis of decades of data on atherothrombotic MI with reperfusion therapy. Four stages of progressively worsening myocardial tissue injury are identified: (1) aborted MI (no/minimal myocardial necrosis); (2) MI with significant cardiomyocyte necrosis, but without microvascular injury; (3) cardiomyocyte necrosis and microvascular dysfunction leading to microvascular obstruction (ie, "no-reflow"); and (4) cardiomyocyte and microvascular necrosis leading to reperfusion hemorrhage. Each stage reflects progression of tissue pathology of myocardial ischemia and reperfusion injury from the previous stage. Clinical studies have shown worse remodeling and increase in adverse clinical outcomes with progressive injury. Notably, microvascular injury is of particular importance, with the most severe form (hemorrhagic MI) leading to infarct expansion and risk of mechanical complications. This classification has the potential to stratify risk in MI patients and lay the groundwork for development of new, injury stage-specific and tissue pathology-based therapies for MI.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão , Humanos , Canadá/epidemiologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Necrose/complicações , Traumatismo por Reperfusão/complicações , Hemorragia/etiologia
4.
EJNMMI Res ; 13(1): 90, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823919

RESUMO

BACKGROUND: After myocardial infarction, fibrosis and an ongoing dysregulated inflammatory response have been shown to lead to adverse cardiac remodeling. FDG PET is an imaging modality sensitive to inflammation as long as suppression protocols are observed while gadolinium enhanced MRI can be used to determine extracellular volume (ECV), a measure of fibrosis. In patients, glucose suppression is achieved variously through a high fat diet, fasting and injection of heparin. To emulate this process in canines, a heparin injection and lipid infusion are used, leading to similar fatty acids in the blood. The aim of this study was to examine the effect of glucose suppression on the uptake of FDG in the infarcted myocardial tissue and also on the determination of ECV in both the infarcted tissue and in the myocardium remote to the zone of infarction during a long constant infusion of FDG and Gd-DTPA. RESULTS: Extracellular volume was affected neither by suppression nor the length of the constant infusion in remote and infarcted tissue. Metabolic rate of glucose in infarcted tissue decreased during and after suppression of glucose uptake by lipid infusion and heparin injection. An increase in fibrosis and inflammatory cells was found in the center of the infarct as compared to remote tissue. CONCLUSION: The decrease in the metabolic rate of glucose in the infarcted tissue suggests that inflammatory cells may be affected by glucose suppression through heparin injection and lipid infusion.

5.
PLoS One ; 18(9): e0291854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768966

RESUMO

BACKGROUND: Left-sided breast cancer patients receiving adjuvant radiotherapy are at risk for coronary artery disease, and/or radiation mediated effects on the microvasculature. Previously our laboratory demonstrated in canines with hybrid 18FDG/PET a progressive global inflammatory response during the initial one year following treatment. In this study, the objective is to evaluate corresponding changes in perfusion, in the same cohort, where resting myocardial blood flow (MBF) was quantitatively measured. METHOD: In five canines, Ammonia PET (13NH3) derived MBF was measured at baseline, 1-week, 1, 3, 6 and 12-months after cardiac external beam irradiation. MBF measurements were correlated with concurrent 18FDG uptake. Simultaneously MBF was measured using the dual bolus MRI method. RESULTS: MBF was significantly increased at all time points, in comparison to baseline, except at 3-months. This was seen globally throughout the entire myocardium independent of the coronary artery territories. MBF showed a modest significant correlation with 18FDG activity for the entire myocardium (r = 0.51, p = 0.005) including the LAD (r = 0.49, p = 0.008) and LCX (r = 0.47, p = 0.013) coronary artery territories. CONCLUSION: In this canine model of radiotherapy for left-sided breast cancer, resting MBF increases as early as 1-week and persists for up to one year except at 3-months. This pattern is similar to that of 18FDG uptake. A possible interpretation is that the increase in resting MBF is a response to myocardial inflammation.


Assuntos
Neoplasias da Mama , Imagem de Perfusão do Miocárdio , Neoplasias Unilaterais da Mama , Humanos , Animais , Cães , Feminino , Circulação Coronária/fisiologia , Fluordesoxiglucose F18 , Coração/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Tomografia por Emissão de Pósitrons/métodos
6.
J Nucl Med Technol ; 51(2): 133-139, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37192822

RESUMO

Our purpose was to investigate the utility of 18F-FDG PET/MRI and serial blood work to detect early inflammatory responses and cardiac functionality changes at 1 mo after radiation therapy (RT) in patients with left-sided breast cancer. Methods: Fifteen left-sided breast cancer patients who enrolled in the RICT-BREAST study underwent cardiac PET/MRI at baseline and 1 mo after standard RT. Eleven patients received deep-inspiration breath-hold RT, whereas the others received free-breathing RT. A list-mode 18F-FDG PET scan with glucose suppression was acquired. Myocardial inflammation was quantified by the change in 18F-FDG SUVmean (based on body weight) and analyzed on the basis of the myocardial tissue associated with the left anterior descending, left circumflex, or right coronary artery territories. MRI assessments, including left ventricular functional and extracellular volumes (ECVs), were extracted from T1 (before and during a constant infusion of gadolinium) and cine images, respectively, acquired simultaneously during the PET acquisition. Cardiac injury and inflammation biomarker measurements of high-sensitivity troponin T, high-sensitivity C-reactive protein, and erythrocyte sedimentation rate were measured at the 1-mo follow-up and compared with preirradiation values. Results: At the 1-mo follow-up, a significant increase (10%) in myocardial SUVmean in left anterior descending segments (P = 0.04) and ECVs in slices at the apex (6%) and base (5%) was detected (P ≤ 0.02). Further, a significant reduction in left ventricular stroke volume (-7%) was seen (P < 0.02). No significant changes in any circulating biomarkers were seen at follow-up. Conclusion: Myocardial 18F-FDG uptake and functional MRI, including stroke volume and ECVs, were sensitive to changes at 1 mo after breast cancer RT, with findings suggesting an acute cardiac inflammatory response to RT.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Fluordesoxiglucose F18 , Coração/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Arritmias Cardíacas , Imageamento por Ressonância Magnética
7.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835448

RESUMO

Many chronic inflammatory conditions are mediated by an increase in the number of monocytes in peripheral circulation, differentiation of monocytes to macrophages, and different macrophage subpopulations during pro- and anti-inflammatory stages of tissue injury. When hepcidin secretion is stimulated during inflammation, the iron export protein ferroportin is targeted for degradation on a limited number of cell types, including monocytes and macrophages. Such changes in monocyte iron metabolism raise the possibility of non-invasively tracking the activity of these immune cells using magnetic resonance imaging (MRI). We hypothesized that hepcidin-mediated changes in monocyte iron regulation influence both cellular iron content and MRI relaxation rates. In response to varying conditions of extracellular iron supplementation, ferroportin protein levels in human THP-1 monocytes decreased two- to eightfold, consistent with paracrine/autocrine regulation of iron export. Following hepcidin treatment, ferroportin protein levels further decreased two- to fourfold. This was accompanied by an approximately twofold increase in total transverse relaxation rate, R2*, compared to non-supplemented cells. A positive correlation between total cellular iron content and R2* improved from moderate to strong in the presence of hepcidin. These findings suggest that hepcidin-mediated changes detected in monocytes using MRI could be valuable for in vivo cell tracking of inflammatory responses.


Assuntos
Hepcidinas , Inflamação , Ferro , Monócitos , Humanos , Hepcidinas/metabolismo , Ferro/metabolismo , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Monócitos/metabolismo , Inflamação/metabolismo
8.
J Cereb Blood Flow Metab ; 43(6): 921-936, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695071

RESUMO

White matter (WM) injury is frequently observed along with dementia. Positron emission tomography with amyloid-ligands (Aß-PET) recently gained interest for detecting WM injury. Yet, little is understood about the origin of the altered Aß-PET signal in WM regions. Here, we investigated the relative contributions of diffusion MRI-based microstructural alterations, including free water and tissue-specific properties, to Aß-PET in WM and to cognition. We included a unique cohort of 115 participants covering the spectrum of low-to-severe white matter hyperintensity (WMH) burden and cognitively normal to dementia. We applied a bi-tensor diffusion-MRI model that differentiates between (i) the extracellular WM compartment (represented via free water), and (ii) the fiber-specific compartment (via free water-adjusted fractional anisotropy [FA]). We observed that, in regions of WMH, a decrease in Aß-PET related most closely to higher free water and higher WMH volume. In contrast, in normal-appearing WM, an increase in Aß-PET related more closely to higher cortical Aß (together with lower free water-adjusted FA). In relation to cognitive impairment, we observed a closer relationship with higher free water than with either free water-adjusted FA or WM PET. Our findings support free water and Aß-PET as markers of WM abnormalities in patients with mixed dementia, and contribute to a better understanding of processes giving rise to the WM PET signal.


Assuntos
Doença de Alzheimer , Demência , Doenças Vasculares , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Imagem de Tensor de Difusão/métodos , Cognição/fisiologia , Água/metabolismo , Demência/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo
9.
Alzheimers Dement ; 19(4): 1503-1517, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36047604

RESUMO

It remains unclear to what extent cerebrovascular burden relates to amyloid beta (Aß) deposition, neurodegeneration, and cognitive dysfunction in mixed disease populations with small vessel disease and Alzheimer's disease (AD) pathology. In 120 subjects, we investigated the association of vascular burden (white matter hyperintensity [WMH] volumes) with cognition. Using mediation analyses, we tested the indirect effects of WMH on cognition via Aß deposition (18 F-AV45 positron emission tomography [PET]) and neurodegeneration (cortical thickness or 18 F fluorodeoxyglucose PET) in AD signature regions. We observed that increased total WMH volume was associated with poorer performance in all tested cognitive domains, with the strongest effects observed for semantic fluency. These relationships were mediated mainly via cortical thinning, particularly of the temporal lobe, and to a lesser extent serially mediated via Aß and cortical thinning of AD signature regions. WMH volumes differentially impacted cognition depending on lobar location and Aß status. In summary, our study suggests mainly an amyloid-independent pathway in which vascular burden affects cognitive function via localized neurodegeneration. HIGHLIGHTS: Alzheimer's disease often co-exists with vascular pathology. We studied a unique cohort enriched for high white matter hyperintensities (WMH). High WMH related to cognitive impairment of semantic fluency and executive function. This relationship was mediated via temporo-parietal atrophy rather than metabolism. This relationship was, to lesser extent, serially mediated via amyloid beta and atrophy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Afinamento Cortical Cerebral/patologia , Imageamento por Ressonância Magnética , Cognição , Disfunção Cognitiva/metabolismo , Tomografia por Emissão de Pósitrons , Amiloide/metabolismo , Atrofia/patologia , Substância Branca/patologia
10.
Nat Commun ; 13(1): 6394, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302906

RESUMO

Sudden blockage of arteries supplying the heart muscle contributes to millions of heart attacks (myocardial infarction, MI) around the world. Although re-opening these arteries (reperfusion) saves MI patients from immediate death, approximately 50% of these patients go on to develop chronic heart failure (CHF) and die within a 5-year period; however, why some patients accelerate towards CHF while others do not remains unclear. Here we show, using large animal models of reperfused MI, that intramyocardial hemorrhage - the most damaging form of reperfusion injury (evident in nearly 40% of reperfused ST-elevation MI patients) - drives delayed infarct healing and is centrally responsible for continuous fatty degeneration of the infarcted myocardium contributing to adverse remodeling of the heart. Specifically, we show that the fatty degeneration of the hemorrhagic MI zone stems from iron-induced macrophage activation, lipid peroxidation, foam cell formation, ceroid production, foam cell apoptosis and iron recycling. We also demonstrate that timely reduction of iron within the hemorrhagic MI zone reduces fatty infiltration and directs the heart towards favorable remodeling. Collectively, our findings elucidate why some, but not all, MIs are destined to CHF and help define a potential therapeutic strategy to mitigate post-MI CHF independent of MI size.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Miocárdio , Infarto do Miocárdio/complicações , Infarto do Miocárdio/terapia , Hemorragia , Coração , Insuficiência Cardíaca/etiologia , Ferro , Remodelação Ventricular , Modelos Animais de Doenças
11.
PLoS One ; 17(7): e0269592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802680

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with extracellular matrix (ECM) remodelling and often coexists with myocardial fibrosis (MF); however, the causality of these conditions is not well established. OBJECTIVE: We aim to corroborate AF to MF causality by quantifying left atrial (LA) fibrosis in cardiac magnetic resonance (CMR) images after persistent rapid ventricular pacing and subsequent AF using a canine model and histopathological validation. METHODS: Twelve canines (9 experimental, 3 control) underwent baseline 3D LGE-CMR imaging at 3T followed by insertion of a pacing device and 5 weeks of rapid ventricular pacing to induce AF (experimental) or no pacing (control). Following the 5 weeks, pacing devices were removed to permit CMR imaging followed by excision of the hearts and histopathological imaging. LA myocardial segmentation was performed manually at baseline and post-pacing to permit volumetric %MF quantification using the image intensity ratio (IIR) technique, wherein fibrosis was defined as pixels > mean LA myocardium intensity + 2SD. RESULTS: Volumetric %MF increased by an average of 2.11 ± 0.88% post-pacing in 7 of 9 experimental dogs. While there was a significant difference between paired %MF measurements from baseline to post-pacing in experimental dogs (P = 0.019), there was no significant change in control dogs (P = 0.019 and P = 0.5, Wilcoxon signed rank tests). The median %MF for paced animals was significantly greater than that of non-paced dogs at the 5-week post-insertion time point (P = 0.009, Mann Whitney U test). Histopathological imaging yielded an average %MF of 19.42 ± 4.80% (mean ± SD) for paced dogs compared to 1.85% in one control dog. CONCLUSION: Persistent rapid ventricular pacing and subsequent AF leads to an increase in LA fibrosis volumes measured by the IIR technique; however, quantification is limited by inherent image acquisition parameters and observer variability.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Animais , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/patologia , Fibrilação Atrial/terapia , Cardiomiopatias/patologia , Meios de Contraste , Cães , Fibrose , Gadolínio , Átrios do Coração , Imageamento por Ressonância Magnética/métodos
13.
J Am Coll Cardiol ; 79(1): 35-48, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34991787

RESUMO

BACKGROUND: Reperfusion therapy for acute myocardial infarction (MI) is lifesaving. However, the benefit of reperfusion therapy can be paradoxically diminished by reperfusion injury, which can increase MI size. OBJECTIVES: Hemorrhage is known to occur in reperfused MIs, but whether hemorrhage plays a role in reperfusion-mediated MI expansion is not known. METHODS: We studied cardiac troponin kinetics (cTn) of ST-segment elevation MI patients (n = 70) classified by cardiovascular magnetic resonance to be hemorrhagic (70%) or nonhemorrhagic following primary percutaneous coronary intervention. To isolate the effects of hemorrhage from ischemic burden, we performed controlled canine studies (n = 25), and serially followed both cTn and MI size with time-lapse imaging. RESULTS: CTn was not different before reperfusion; however, an increase in cTn following primary percutaneous coronary intervention peaked earlier (12 hours vs 24 hours; P < 0.05) and was significantly higher in patients with hemorrhage (P < 0.01). In hemorrhagic animals, reperfusion led to rapid expansion of myocardial necrosis culminating in epicardial involvement, which was not present in nonhemorrhagic cases (P < 0.001). MI size and salvage were not different at 1 hour postreperfusion in animals with and without hemorrhage (P = 0.65). However, within 72 hours of reperfusion, a 4-fold greater loss in salvageable myocardium was evident in hemorrhagic MIs (P < 0.001). This paralleled observations in patients with larger MIs occurring in hemorrhagic cases (P < 0.01). CONCLUSIONS: Myocardial hemorrhage is a determinant of MI size. It drives MI expansion after reperfusion and compromises myocardial salvage. This introduces a clinical role of hemorrhage in acute care management, risk assessment, and future therapeutics.


Assuntos
Hemorragia/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Cães , Humanos , Imagem Cinética por Ressonância Magnética , Miocárdio/patologia , Necrose , Intervenção Coronária Percutânea , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Terapia de Salvação , Tempo para o Tratamento , Troponina/sangue
14.
J Cardiovasc Magn Reson ; 23(1): 88, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261494

RESUMO

BACKGROUND: Intramyocardial hemorrhage (IMH) within myocardial infarction (MI) is associated with major adverse cardiovascular events. Bright-blood T2*-based cardiovascular magnetic resonance (CMR) has emerged as the reference standard for non-invasive IMH detection. Despite this, the dark-blood T2*-based CMR is becoming interchangeably used with bright-blood T2*-weighted CMR in both clinical and preclinical settings for IMH detection. To date however, the relative merits of dark-blood T2*-weighted with respect to bright-blood T2*-weighted CMR for IMH characterization has not been studied. We investigated the diagnostic capacity of dark-blood T2*-weighted CMR against bright-blood T2*-weighted CMR for IMH characterization in clinical and preclinical settings. MATERIALS AND METHODS: Hemorrhagic MI patients (n = 20) and canines (n = 11) were imaged in the acute and chronic phases at 1.5 and 3 T with dark- and bright-blood T2*-weighted CMR. Imaging characteristics (Relative signal-to-noise (SNR), Relative contrast-to-noise (CNR), IMH Extent) and diagnostic performance (sensitivity, specificity, accuracy, area-under-the-curve, and inter-observer variability) of dark-blood T2*-weighted CMR for IMH characterization were assessed relative to bright-blood T2*-weighted CMR. RESULTS: At both clinical and preclinical settings, compared to bright-blood T2*-weighted CMR, dark-blood T2*-weighted images had significantly lower SNR, CNR and reduced IMH extent (all p < 0.05). Dark-blood T2*-weighted CMR also demonstrated weaker sensitivity, specificity, accuracy, and inter-observer variability compared to bright-blood T2*-weighted CMR (all p < 0.05). These observations were consistent across infarct age and imaging field strengths. CONCLUSION: While IMH can be visible on dark-blood T2*-weighted CMR, the overall conspicuity of IMH is significantly reduced compared to that observed in bright-blood T2*-weighted images, across infarct age in clinical and preclinical settings at 1.5 and 3 T. Hence, bright-blood T2*-weighted CMR would be preferable for clinical use since dark-blood T2*-weighted CMR carries the potential to misclassify hemorrhagic MIs as non-hemorrhagic MIs.


Assuntos
Hemorragia , Infarto do Miocárdio , Animais , Cães , Hemorragia/diagnóstico por imagem , Hemorragia/etiologia , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio , Valor Preditivo dos Testes
15.
EJNMMI Phys ; 8(1): 24, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683464

RESUMO

BACKGROUND: Accurate quantification of radioactivity, measured by an integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) system, is still a challenge. One aspect of such a challenge is to correct for the hardware attenuation, such as the patient table and radio frequency (RF) resonators. For PET/MRI systems, computed tomography (CT) is commonly used to produce hardware attenuation correction (AC) maps, by converting Hounsfield units (HU) to a linear attenuation coefficients (LAC) map at the PET energy level 511 keV, using a bilinear model. The model does not address beam hardening, nor higher density materials, which can lead to inaccurate corrections. PURPOSE: In this study, we introduce a transmission-based (TX-based) AC technique with a static Germanium-68 (Ge-68) transmission source to generate hardware AC maps using the PET/MRI system itself, without the need for PET or medical CT scanners. The AC TX-based maps were generated for a homogeneous cylinder, made of acrylic as a validator. The technique thereafter was applied to the patient table and posterior part of an RF-phased array used in cardiovascular PET/MRI imaging. The proposed TX-based, and the CT-based, hardware maps were used in reconstructing PET images of one cardiac patient, and the results were analysed and compared. RESULTS: The LAC derived by the TX-based method for the acrylic cylinder is estimated to be 0.10851 ± 0.00380 cm-1 compared to the 0.10698 ± 0.00321 cm-1 theoretical value reported in the literature. The PET photon counts were reduced by 8.7 ± 1.1% with the patient table, at the region used in cardiac scans, while the CT-based map, used for correction, over-estimated counts by 4.3 ± 1.3%. Reconstructed in vivo images using TX-based AC hardware maps have shown 4.1 ± 0.9% mean difference compared to those reconstructed images using CT-based AC. CONCLUSIONS: The LAC of the acrylic cylinder measurements using the TX-based technique was in agreement with those in the literature confirming the validity of the technique. The over-estimation of photon counts caused by the CT-based model used for the patient table was improved by the TX-based technique. Therefore, TX-based AC of hardware using the PET/MRI system itself is possible and can produce more accurate images when compared to the CT-based hardware AC in cardiac PET images.

16.
Radiother Oncol ; 158: 276-284, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636230

RESUMO

BACKGROUND AND PURPOSE: To quantify intra-fraction tumor motion using imageguidance and implanted fiducial markers to determine if a 5 mm planning-target-volume (PTV) margin is sufficient for early stage breast cancer patients receiving neoadjuvant stereotactic ablative radiotherapy (SABR). MATERIALS AND METHODS: A HydroMark© (Mammotome) fiducial was implanted at the time of biopsy adjacent to the tumor. Sixty-one patients with 62 tumours were treated prone using a 5 mm PTV margin. Motion was quantified using two methods (separate patient groups): 1) difference in 3D fiducial position pre- and post-treatment cone-beam CTs (CBCTs) in 18 patients receiving 21 Gy/1fraction (fx); 2) acquiring 2D triggered-kVimages to quantify 3D intra-fraction motion using a 2D-to-3D estimation method for 44 tumours receiving 21 Gy/1fx (n = 22) or 30 Gy/3fx (n = 22). For 2), motion was quantified by calculating the magnitude of intra-fraction positional deviation from the pretreatment CBCT. PTV margins were derived using van Herkian analysis. RESULTS: The average ± standard deviation magnitude of motion across patients was 1.3 ± 1.15 mm Left/Right (L/R), 1.0 ± 0.9 mm Inferiorly/Superiorly (I/S), and 1.8 ± 1.5 mm Anteriorly/Posteriorly (A/P). 85/105 (81%) treatment fractions had dominant anterior motion. 6/62patients (9.7%) had mean intra-fraction motion during any fraction > 5 mm in any direction, with 4 in the anterior direction. Estimated PTV margins for single and three-fx patients in the L/R, I/S, and A/P directions were 6.0x4.1x5.9 mm and 4.5x2.9x4.3 mm, respectively. CONCLUSION: Our results suggest that a 5 mm PTV margin is sufficient for the I/S and A/P directions if a lateral kV image is acquired immediately before treatment. For the L/R direction, either further immobilization or a larger margin is required.


Assuntos
Neoplasias da Mama , Radiocirurgia , Radioterapia Guiada por Imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Tomografia Computadorizada de Feixe Cônico , Marcadores Fiduciais , Humanos , Terapia Neoadjuvante , Planejamento da Radioterapia Assistida por Computador
17.
Epilepsy Res ; 172: 106583, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636504

RESUMO

OBJECTIVE: Hybrid PET/MRI may improve detection of seizure-onset zone (SOZ) in drug-resistant epilepsy (DRE), however, concerns over PET bias from MRI-based attenuation correction (MRAC) have limited clinical adoption of PET/MRI. This study evaluated the diagnostic equivalency and potential clinical value of PET/MRI against PET/CT in DRE. MATERIALS AND METHODS: MRI, FDG-PET and CT images (n = 18) were acquired using a hybrid PET/MRI and a CT scanner. To assess diagnostic equivalency, PET was reconstructed using MRAC (RESOLUTE) and CT-based attenuation correction (CTAC) to generate PET/MRI and PET/CT images, respectively. PET/MRI and PET/CT images were compared qualitatively through visual assessment and quantitatively through regional standardized uptake value (SUV) and z-score assessment. Diagnostic accuracy and sensitivity of PET/MRI and PET/CT for SOZ detection were calculated through comparison to reference standards (clinical hypothesis and histopathology, respectively). RESULTS: Inter-reader agreement in visual assessment of PET/MRI and PET/CT images was 78 % and 81 %, respectively. PET/MRI and PET/CT were strongly correlated in mean SUV (r = 0.99, p < 0.001) and z-scores (r = 0.92, p < 0.001) across all brain regions. MRAC SUV bias was <5% in most brain regions except the inferior temporal gyrus, temporal pole, and cerebellum. Diagnostic accuracy and sensitivity were similar between PET/MRI and PET/CT (87 % vs. 85 % and 83 % vs. 83 %, respectively). CONCLUSION: We demonstrate here that PET/MRI with optimal MRAC can yield similar diagnostic performance as PET/CT. Nevertheless, further exploration of the potential added value of PET/MRI is necessary before clinical adoption of PET/MRI for epilepsy imaging.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Preparações Farmacêuticas , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Imagem Multimodal , Projetos Piloto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
19.
J Digit Imaging ; 33(5): 1065-1072, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748300

RESUMO

We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position. Images were registered using a BSpline transformation with a 2 cm isotropic grid at 100, 20, 5, 1, and 0.5PS (BRAINSFit in 3DSlicer). Signal enhancement curves were analyzed voxel-by-voxel using the Tofts kinetic model. Comparing unregistered with registered groups, we found a significant change in the 90th percentile of the voxel-wise distribution of Ktrans. We also found a significant reduction in the following: (1) in the standard error (uncertainty) of the parameter value estimation, (2) the number of voxel fits providing unphysical values for the extracellular-extravascular volume fraction (ve > 1), and (3) goodness of fit. We found no significant differences in the median of parameter value distributions (Ktrans, ve) between unregistered and registered images. Differences between parameters and uncertainties obtained using 100PS versus 20PS were small and statistically insignificant. As such, computation time can be reduced by a factor of 2, on average, by using 20PS while not affecting the kinetic fit. The methods outlined here are important for studies including a large number of post-contrast images or number of patient images.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Humanos , Cinética , Imageamento por Ressonância Magnética , Incerteza
20.
Eur J Hybrid Imaging ; 4(1): 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626841

RESUMO

BACKGROUND: Simultaneous cardiovascular imaging with positron emission tomography (PET) and magnetic resonance imaging (MRI) requires tools such as radio frequency (RF) phased arrays to achieve high temporal and spatial resolution in the MRI, as well as accurate quantification of PET. Today, high-density phased arrays (> 16 channels) used for cardiovascular PET/MRI are not designed to achieve low PET attenuation, and correcting the PET attenuation they cause requires off-line reconstruction, extra time and resources. PURPOSE: Motivated by previous work assessing the MRI performance of a novel prospectively designed 32-channel phased array, this study assessed the PET image quality with this array in place. Guided by NEMA standards, PET performance was measured using global PET counts, regional background variation (BV), contrast recovery (CR) and contrast-to-noise ratio (CNR) for both the novel array and standard arrays (mMR 12-channel and MRI 32-channel). Nonattenuation-corrected (NAC) data from all arrays (and each part of the array) were processed and compared to no-array, and relative percentage difference (RPD) of the global means was estimated and reported for each part of the arrays. Attenuation correction (AC) of PET images (water in the phantom) using two approaches, MR-based AC map (MRAC) and dual-energy CT-based map (DCTAC), was performed, and RPD compared for each part of the arrays. Percent mean attenuation within regions of interests of the phantom images from each array were compared using a two-way analysis of variance (ANOVA). RESULTS: The NAC data of the anterior part of the novel array recorded the least PET attenuation (≤ 2%); while the full novel array (anterior and posterior together) AC data, produced by MRAC and DCTAC approaches, recorded attenuation of 1.5 ± 2.9% and 0.0 ± 2.5%, respectively. The novel array PET count loss was significantly lower (p = 0.001) than those caused by the standard arrays. CONCLUSIONS: Results of this novel 32-channel cardiac array PET performance evaluation, together with its previously reported MRI performance assessment, suggest the novel array to be a strong alternative to the standard arrays currently used for cardiovascular hybrid PET/MRI imaging. It enables accurate PET quantification and high-temporal and spatial resolution for MR imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...