Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34439212

RESUMO

Triple-negative breast cancer (TNBC) is notoriously aggressive with a high metastatic potential, and targeted therapies are lacking. Using transcriptomic and histologic analysis of TNBC samples, we found that a high expression of thrombospondin-1 (TSP1), a potent endogenous inhibitor of angiogenesis and an activator of latent transforming growth factor beta (TGF-ß), is associated with (i) gene signatures of epithelial-mesenchymal transition and TGF-ß signaling, (ii) metastasis and (iii) a reduced survival in TNBC patients. In contrast, in tumors expressing low levels of TSP1, gene signatures of interferon gamma (IFN-γ) signaling and lymphocyte activation were enriched. In TNBC biopsies, TSP1 expression inversely correlated with the CD8+ tumor-infiltrating lymphocytes (TILs) content. In the 4T1 metastatic mouse model of TNBC, TSP1 silencing did not affect primary tumor development but, strikingly, impaired metastasis in immunocompetent but not in immunodeficient nude mice. Moreover, TSP1 knockdown increased tumor vascularization and T lymphocyte infiltration and decreased TGF-ß activation in immunocompetent mice. Noteworthy was the finding that TSP1 knockdown increased CD8+ TILs and their programmed cell death 1 (PD-1) expression and sensitized 4T1 tumors to anti-PD-1 therapy. TSP1 inhibition might thus represent an innovative targeted approach to impair TGF-ß activation and breast cancer cell metastasis and improve lymphocyte infiltration in tumors, and immunotherapy efficacy in TNBC.

2.
Oncotarget ; 8(32): 52511-52526, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881748

RESUMO

Api5 (Apoptosis inhibitor 5) is an anti-apoptotic factor that confers resistance to genotoxic stress in human cancer. Api5 is also expressed in endothelial cells and participates to the Estrogen Receptor α (ERα) signaling to promote cell migration. In this study, we found an over expression of Api5 in human breast cancer. Given that we show that high expression of Api5 in breast cancer patients is associated with shorter recurrence free survival, we investigated the relationship between ERα and Api5 at the molecular level. We found that Api5 Nuclear Receptor box (NR box) drives a direct interaction with the C domain of ERα. Furthermore, Api5 participates to gene transcription activation of ERα target genes upon estrogen treatment. Besides, Api5 expression favors tumorigenicity and migration and is necessary for tumor growth in vivo in mice xenografted model of breast cancer cell line. These finding suggest that Api5 is a new cofactor of ERα that functionally participates to the tumorigenic phenotype of breast cancer cells. In ERα breast cancer patients, Api5 overexpression is associated with poor survival, and may be used as a predictive marker of breast cancer recurrence free survival.

3.
FASEB J ; 31(6): 2507-2519, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28242772

RESUMO

Apelin signaling plays an important role during embryo development and regulates angiogenesis, cardiovascular activity, and energy metabolism in adulthood. Overexpression and hyperactivity of this signaling pathway is observed in various pathologic states, such as cardiovascular diseases and cancer, which highlights the importance of inhibiting apelin receptor (APJ); therefore, we developed a cell-based screening assay that uses fluorescence microscopy to identify APJ antagonists. This approach led us to identify the U.S. Food and Drug Administration-approved compound protamine-already used clinically after cardiac surgery-as an agent to bind to heparin and thereby reverse its anticlotting activity. Protamine displays a 390-nM affinity for APJ and behaves as a full antagonist with regard to G protein and ß-arrestin-dependent intracellular signaling. Ex vivo and in vivo, protamine abolishes well-known apelin effects, such as angiogenesis, glucose tolerance, and vasodilatation. Remarkably, protamine antagonist activity is fully reversed by heparin treatment both in vitro and in vivo Thus, our results demonstrate a new pharmacologic property of protamine-blockade of APJ-that could explain some adverse effects observed in protamine-treated patients. Moreover, our data reveal that the established antiangiogenic activity of protamine would rely on APJ antagonism.-Le Gonidec, S., Chaves-Almagro, C., Bai, Y., Kang, H. J., Smith, A., Wanecq, E., Huang, X.-P., Prats, H., Knibiehler, B., Roth, B. L., Barak, L. S., Caron, M. G., Valet, P., Audigier, Y., Masri, B. Protamine is an antagonist of apelin receptor, and its activity is reversed by heparin.


Assuntos
Heparina/farmacologia , Protaminas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Receptores de Apelina , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Biochem Biophys Res Commun ; 479(2): 365-371, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27644878

RESUMO

Under physiological stress conditions the cell protects itself through a global blockade on cap-dependent translation of mRNA. This allows cap-independent mechanisms such as internal ribosome entry site (IRES)-mediated translation to take over and initiate the translation of a specific pool of mRNAs that encode proteins involved in protecting the cell from stress. Staufen 1 (Stau1) is an RNA-binding protein that has been previously implicated in the regulation of stress granule formation and therefore could play a key role in protecting the cell against stress stimuli such as oxidative and endoplasmic reticulum (ER) stress. We hypothesized that Stau1 mRNA could, like many stress response genes, contain an IRES in its 5'UTR. Here we describe that a bona fide IRES element is present in the 5'UTR of Stau1 mRNA, which is activated under hypoxic and ER stress conditions. Further, we show that the activity of PERK kinase, a major effector of the ER stress response, is required for Stau1 IRES-mediated translation during ER stress. These results suggest that Stau1 is a stress response gene that remains efficiently translated during hypoxia and ER stress despite the substantial global inhibition of cap-dependent protein translation, promoting cell recovery following stress.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Estresse do Retículo Endoplasmático , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Regiões 5' não Traduzidas , Hipóxia Celular , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , Oxigênio/química , Plasmídeos/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
5.
Cancer Res ; 76(22): 6507-6519, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634764

RESUMO

The CXCL4 paralog CXCL4L1 is a less studied chemokine that has been suggested to exert an antiangiogenic function. However, CXCL4L1 is also expressed in patient tumors, tumor cell lines, and murine xenografts, prompting a more detailed analysis of its role in cancer pathogenesis. We used genetic and antibody-based approaches to attenuate CXCL4L1 in models of pancreatic ductal adenocarcinoma (PDAC). Mechanisms of expression were assessed in cell coculture experiments, murine, and avian xenotransplants, including through an evaluation of CpG methylation and mutation of critical CpG residues. CXCL4L1 gene expression was increased greatly in primary and metastatic PDAC. We found that myofibroblasts triggered cues in the tumor microenvironment, which led to induction of CXCL4L1 in tumor cells. CXCL4L1 expression was also controlled by epigenetic modifications at critical CpG islands, which were mapped. CXCL4L1 inhibited angiogenesis but also affected tumor development more directly, depending on the tumor cell type. In vivo administration of an mAb against CXCL4L1 demonstrated a blockade in the growth of tumors positive for CXCR3, a critical receptor for CXCL4 ligands. Our findings define a protumorigenic role in PDAC development for endogenous CXCL4L1, which is independent of its antiangiogenic function. Cancer Res; 76(22); 6507-19. ©2016 AACR.


Assuntos
Inibidores da Angiogênese/genética , Neoplasias Pancreáticas/genética , Receptores CXCR3/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas , Humanos , Camundongos , Neovascularização Patológica , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Fator Plaquetário 4 , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Signal ; 9(426): ra44, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27141928

RESUMO

Angiogenesis is induced by various conditions, including hypoxia. Although cap-dependent translation is globally inhibited during ischemia, the mRNAs encoding two important proangiogenic growth factors, vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2), are translated at early time points in ischemic muscle. The translation of these mRNAs can occur through internal ribosome entry sites (IRESs), rather than through cap-dependent translation. Hypoxic conditions also induce the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, leading us to assess the interplay between hypoxia, ER stress, and IRES-mediated translation of FGF-2 and VEGF We found that unlike cap-dependent translation, translation through FGF-2 and VEGF IRESs was efficient in cells and transgenic mice subjected to ER stress-inducing stimuli. We identified PERK, a kinase that is activated by ER stress, as the driver of VEGF and FGF-2 IRES-mediated translation in cells and in mice expressing IRES-driven reporter genes and exposed to hypoxic stress. These results demonstrate the role of IRES-dependent translation in the induction of the proangiogenic factors VEGF and FGF-2 in response to acute hypoxic stress. Furthermore, the PERK pathway could be a viable pharmacological target to improve physiological responses to ischemic situations.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sítios Internos de Entrada Ribossomal , Isquemia/metabolismo , eIF-2 Quinase/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Neovascularização Patológica , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
EMBO Rep ; 17(4): 508-18, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26964895

RESUMO

Ku heterodimer is a DNA binding protein with a prominent role in DNA repair. Here, we investigate whether and how Ku impacts the DNA damage response by acting as a post-transcriptional regulator of gene expression. We show that Ku represses p53 protein synthesis and p53-mediated apoptosis by binding to a bulged stem-loop structure within the p53 5' UTR However, Ku-mediated translational repression of the p53 mRNA is relieved after genotoxic stress. The underlying mechanism involves Ku acetylation which disrupts Ku-p53 mRNA interactions. These results suggest that Ku-mediated repression of p53 mRNA translation constitutes a novel mechanism linking DNA repair and mRNA translation.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA , Autoantígeno Ku/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/genética , Regiões 5' não Traduzidas , Acetilação , Apoptose , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Autoantígeno Ku/genética , Ligação Proteica , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
Oncotarget ; 6(37): 39924-40, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26498689

RESUMO

Dysregulated expression of translation initiation factors has been associated with carcinogenesis, but underlying mechanisms remains to be fully understood. Here we show that eIF4H (eukaryotic translation initiation factor 4H), an activator of the RNA helicase eIF4A, is overexpressed in lung carcinomas and predictive of response to chemotherapy. In lung cancer cells, depletion of eIF4H enhances sensitization to chemotherapy, decreases cell migration and inhibits tumor growth in vivo, in association with reduced translation of mRNA encoding cell-proliferation (c-Myc, cyclin D1) angiogenic (FGF-2) and anti-apoptotic factors (CIAP-1, BCL-xL). Conversely, each isoform of eIF4H acts as an oncogene in NIH3T3 cells by stimulating transformation, invasion, tumor growth and resistance to drug-induced apoptosis together with increased translation of IRES-containing or structured 5'UTR mRNAs. These results demonstrate that eIF4H plays a crucial role in translational control and can promote cellular transformation by preferentially regulating the translation of potent growth and survival factor mRNAs, indicating that eIF4H is a promising new molecular target for cancer therapy.


Assuntos
Fatores de Iniciação em Eucariotos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Biossíntese de Proteínas/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Etoposídeo/farmacologia , Fatores de Iniciação em Eucariotos/metabolismo , Feminino , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Células NIH 3T3 , Interferência de RNA , Terapêutica com RNAi/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Oncotarget ; 6(28): 24922-34, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26325176

RESUMO

IRE1α is an endoplasmic reticulum (ER)-resident transmembrane signaling protein and a cellular stress sensor. The protein harbors a cytosolic dual kinase/endoribonuclease activity required for adaptive responses to micro-environmental changes. In an orthotopic xenograft model of human glioma, invalidation of IRE1α RNase or/and kinase activities generated tumors with remarkably distinct phenotypes. Contrasting with the extensive angiogenesis observed in tumors derived from control cells, the double kinase/RNase invalidation reprogrammed mesenchymal differentiation of cancer cells and produced avascular and infiltrative glioblastomas with blood vessel co-option. In comparison, selective invalidation of IRE1α RNase did not compromise tumor angiogenesis but still elicited invasive features and vessel co-option. In vitro, IRE1α RNase deficient cells were also endowed with a higher ability to migrate. Constitutive activation of both enzymes led to wild-type-like lesions. The presence of IRE1α, but not its RNase activity, is therefore required for glioblastoma neovascularization, whereas invasion results only from RNase inhibition. In this model, two key mechanisms of tumor progression and cancer cell survival are functionally linked to IRE1α.


Assuntos
Neoplasias Encefálicas/enzimologia , Endorribonucleases/metabolismo , Glioblastoma/enzimologia , Neovascularização Patológica/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Doxiciclina/farmacologia , Endorribonucleases/genética , Glioblastoma/irrigação sanguínea , Glioblastoma/tratamento farmacológico , Humanos , Immunoblotting , Estimativa de Kaplan-Meier , Camundongos , Microscopia Confocal , Mutação , Invasividade Neoplásica , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Proteínas Serina-Treonina Quinases/genética , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
RNA Biol ; 12(3): 320-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826664

RESUMO

The activation of translation contributes to malignant transformation and is an emerging target for cancer therapies. RNA G-quadruplex structures are general inhibitors of cap-dependent mRNA translation and were recently shown to be targeted for oncoprotein translational activation. In contrast however, the G-quadruplex within the 5'UTR of the human vascular endothelial growth factor A (VEGF) has been shown to be essential for IRES-mediated translation. Since VEGF has a pivotal role in tumor angiogenesis and is a major target of anti-tumoral therapies, we investigated the structure/function relationship of the VEGF G-quadruplex and defined whether it could have a therapeutic potential. We found that the G-quadruplex within the VEGF IRES is dispensable for cap-independent function and activation in stress conditions. However, stabilization of the VEGF G-quadruplex by increasing the G-stretches length or by replacing it with the one of NRAS results in strong inhibition of IRES-mediated translation of VEGF. We also demonstrate that G-quadruplex ligands stabilize the VEGF G-quadruplex and inhibit cap-independent translation in vitro. Importantly, the amount of human VEGF mRNA associated with polysomes decreases in the presence of a highly selective stabilizing G-quadruplex ligand, resulting in reduced VEGF protein expression. Together, our results uncover the existence of functionally silent G-quadruplex structures that are susceptible to conversion into efficient repressors of cap-independent mRNA translation. These findings have implications for the in vivo applications of G-quadruplex-targeting compounds and for anti-angiogenic therapies.


Assuntos
Regiões 5' não Traduzidas , Regulação da Expressão Gênica , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , Fator A de Crescimento do Endotélio Vascular/genética , Sequência de Bases , Quadruplex G , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Genes Reporter , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Polirribossomos/genética , Polirribossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
World J Urol ; 33(2): 281-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24748552

RESUMO

OBJECTIVE: To evaluate the expression of CXCR4, its ligand SDF-1, ß-catenin and E-cadherin throughout the local tumor microenvironment of prostate cancer. PATIENTS AND METHODS: A total of 64 prostate cancer specimens, 24 frozen and 40 paraffin-embedded sections, were obtained from patients treated with radical prostatectomy for clinically localized cancer. Real-time RT-PCR was used for mRNA quantification of CXCR4 and SDF-1 in the tumor center (T), tumor front (F) and distant peritumoral tissue (D). Immunohistochemical analysis was used to investigate the expression patterns of CXCR4, E-cadherin and ß-catenin. Clinical records of these patients were studied for follow-up data, and the prognostic value of these molecules' expression was statistically assessed. RESULTS: CXCR4 mRNA and protein were significantly increased at the tumor front as compared to distant tissue or tumor center. In comparison, SDF-1 mRNA level gradually increased from the tumor center to the distant peritumoral tissue. High CXCR4 at the tumor front was associated with high Gleason score. Low SDF-1 at the tumor front was associated with locally advanced cancer and disease recurrence. Moreover, high CXCR4 staining at the tumor front and increased cytosolic E-cadherin expression in the same location was associated with locally advanced disease. CONCLUSIONS: CXCR4 seems overexpressed at the tumor front of prostate tumors, where it potentially promotes cell migration toward the SDF-1 centrifugal attracting gradient, as well as epithelial-mesenchymal transition. High CXCR4 and low SDF-1 levels at tumor front were both associated with adverse histological features.


Assuntos
Biomarcadores Tumorais/biossíntese , Caderinas/biossíntese , Quimiocina CXCL12/biossíntese , Neoplasias da Próstata/metabolismo , Receptores CXCR4/biossíntese , beta Catenina/biossíntese , Idoso , Movimento Celular , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , RNA Mensageiro/biossíntese
12.
Eur J Cancer ; 50(3): 663-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316062

RESUMO

Using a cancer profiling array, our laboratory has shown that apelin gene is up-regulated in half of colon adenocarcinomas. We have therefore postulated that apelin signalling might play a prominent role in the growth of colon tumours. We first confirmed by immunohistochemistry that apelin peptide is overexpressed in human colon adenomas and adenocarcinomas. We also observed a significant overexpression of apelin receptor (APJ) in adjacent sections. We then demonstrated that several colorectal cancer cell lines also expressed apelin and its receptor, the highest gene and peptide expression being detected in LoVo cells. In this cell line, the expression and functionality of apelin receptor were revealed by apelin-induced adenylyl cyclase inhibition and Akt phosphorylation. In addition, apelin clearly protected LoVo cells from apoptosis by inactivating a caspase-dependent pathway and decreasing the degradation of poly ADP ribose polymerase protein (PARP). Finally, treatment of these tumour cells by the (F13A)apelin13 receptor antagonist significantly reduced their proliferation rate. Altogether, these data suggest the existence of an autocrine loop by which constitutive activation of apelin signalling should participate in the growth of colon adenocarcinomas. Accordingly, apelin signalling is a promising pharmacological target for the treatment of human colon adenomas and adenocarcinomas.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias do Colo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Adenocarcinoma/genética , Apelina , Receptores de Apelina , Apoptose/fisiologia , Comunicação Autócrina , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
13.
FEBS Lett ; 587(19): 3188-94, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23954287

RESUMO

The p53 tumor suppressor protein, one of the most extensively studied proteins, plays a pivotal role in cellular checkpoints that respond to DNA damage to prevent tumorigenesis. However, the transcriptional control of the p53 gene has not been fully characterized. We report that the transcription factor E2F1 binds only to the E2F1 distal site of the p53 promoter in the human papillomavirus positive carcinoma HeLa cell line. Moreover, we showed that etoposide, a DNA damaging agent, activates p53 transcription through the E2F1 pathway. This increase correlates with apoptosis induction as disruption of this pathway led to reduced apoptosis stimulation by the DNA damaging agent.


Assuntos
Apoptose/fisiologia , Fator de Transcrição E2F1/fisiologia , Genes p53 , Papillomaviridae/isolamento & purificação , Transcrição Gênica/fisiologia , Sequência de Bases , Dano ao DNA , Primers do DNA , Etoposídeo/farmacologia , Células HeLa , Humanos , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacos
14.
PLoS One ; 8(8): e71443, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940755

RESUMO

BACKGROUND: The E2f transcription factor family has a pivotal role in controlling the cell fate in general, and in particular cancer development, by regulating the expression of several genes required for S phase entry and progression through the cell cycle. It has become clear that the transcriptional activation of at least one member of the family, E2F1, can also induce apoptosis. An appropriate balance of positive and negative regulators appears to be necessary to modulate E2F1 transcriptional activity, and thus cell fate. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show that Api5, already known as a regulator of E2F1 induced-apoptosis, is required for the E2F1 transcriptional activation of G1/S transition genes, and consequently, for cell cycle progression and cell proliferation. Api5 appears to be a cell cycle regulated protein. Removal of Api5 reduces cyclin E, cyclin A, cyclin D1 and Cdk2 levels, causing G1 cell cycle arrest and cell cycle delay. Luciferase assays established that Api5 directly regulates the expression of several G1/S genes under E2F1 control. Using protein/protein and protein/DNA immunoprecipitation studies, we demonstrate that Api5, even if not physically interacting with E2F1, contributes positively to E2F1 transcriptional activity by increasing E2F1 binding to its target promoters, through an indirect mechanism. CONCLUSION/SIGNIFICANCE: The results described here support the pivotal role of cell cycle related proteins, that like E2F1, may act as tumor suppressors or as proto-oncogenes during cancer development, depending on the behavior of their positive and negative regulators. According to our findings, Api5 contributes to E2F1 transcriptional activation of cell cycle-associated genes by facilitating E2F1 recruitment onto its target promoters and thus E2F1 target gene transcription.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Fator de Transcrição E2F1/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imunoprecipitação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
15.
Nucleic Acids Res ; 41(17): 7997-8010, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851566

RESUMO

Vascular Endothelial Growth Factor A (VEGF-A) is a potent secreted mitogen crucial for physiological and pathological angiogenesis. Post-transcriptional regulation of VEGF-A occurs at multiple levels. Firstly, alternative splicing gives rise to different transcript variants encoding diverse isoforms that exhibit distinct biological properties with regard to receptor binding and extra-cellular localization. Secondly, VEGF-A mRNA stability is regulated by effectors such as hypoxia or growth factors through the binding of stabilizing and destabilizing proteins at AU-rich elements located in the 3'-untranslated region. Thirdly, translation of VEGF-A mRNA is a controlled process involving alternative initiation codons, internal ribosome entry sites (IRESs), an upstream open reading frame (uORF), miRNA targeting and a riboswitch in the 3' untranslated region. These different levels of regulation cooperate for the crucial fine-tuning of the expression of VEGF-A variants. This review will be focused on our current knowledge of the complex post-transcriptional regulatory switches that modulate the cellular VEGF-A level, a paradigmatic model of post-transcriptional regulation.


Assuntos
Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Humanos , Camundongos , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Biol Chem ; 288(19): 13522-33, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23536183

RESUMO

BACKGROUND: CXCL4L1 is a highly potent anti-angiogenic and anti-tumor chemokine, and its structural information is unknown. RESULTS: CXCL4L1 x-ray structure is determined, and it reveals a previously unrecognized chemokine structure adopting a novel C-terminal helix conformation. CONCLUSION: The alternative helix conformation enhances the anti-angiogenic activity of CXCL4L1 by reducing the glycosaminoglycan binding ability. SIGNIFICANCE: Chemokine C-terminal helix orientation is critical in regulating their functions. Chemokines, a subfamily of cytokines, are small, secreted proteins that mediate a variety of biological processes. Various chemokines adopt remarkable conserved tertiary structure comprising an anti-parallel ß-sheet core domain followed by a C-terminal helix that packs onto the ß-sheet. The conserved structural feature has been considered critical for chemokine function, including binding to cell surface receptor. The recently isolated variant, CXCL4L1, is a homologue of CXCL4 chemokine (or platelet factor 4) with potent anti-angiogenic activity and differed only in three amino acid residues of P58L, K66E, and L67H. In this study we show by x-ray structural determination that CXCL4L1 adopts a previously unrecognized structure at its C terminus. The orientation of the C-terminal helix protrudes into the aqueous space to expose the entire helix. The alternative helix orientation modifies the overall chemokine shape and surface properties. The L67H mutation is mainly responsible for the swing-out effect of the helix, whereas mutations of P58L and K66E only act secondarily. This is the first observation that reports an open conformation of the C-terminal helix in a chemokine. This change leads to a decrease of its glycosaminoglycan binding properties and to an enhancement of its anti-angiogenic and anti-tumor effects. This unique structure is recent in evolution and has allowed CXCL4L1 to gain novel functional properties.


Assuntos
Fator Plaquetário 4/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Angiogênicas/química , Cristalografia por Raios X , Cistina/química , Ditiotreitol/química , Heparina/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Fator Plaquetário 4/genética , Fator Plaquetário 4/fisiologia , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Substâncias Redutoras/química
17.
Blood ; 116(22): 4703-11, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20688960

RESUMO

CXCL4 and CXCL4L1 are 2 closely related CXC chemokines that exhibit potent antiangiogenic activity. Because interactions with glycosaminoglycans play a crucial role in chemokines activity, we determined the binding parameters of CXCL4 and CXCL4L1 for heparin, heparan sulfate, and chondroitin sulfate B. We further demonstrated that the Leu67/His67 substitution is critical for the decrease in glycan binding of CXCL4L1 but also for the increase of its angiostatic activities. Using a set of mutants, we show that glycan affinity and angiostatic properties are not completely related. These data are reinforced using a monoclonal antibody that specifically recognizes structural modifications in CXCL4L1 due to the presence of His67 and that blocks its biologic activity. In vivo, half-life and diffusibility of CXCL4L1 compared with CXCL4 is strongly increased. As opposed to CXCL4L1, CXCL4 is preferentially retained at its site of expression. These findings establish that, despite small differences in the primary structure, CXCL4L1 is highly distinct from CXCL4. These observations are not only of great significance for the antiangiogenic activity of CXCL4L1 and for its potential use in clinical development but also for other biologic processes such as inflammation, thrombosis or tissue repair.


Assuntos
Aminoácidos/metabolismo , Dermatan Sulfato/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Fator Plaquetário 4/metabolismo , Sequência de Aminoácidos , Aminoácidos/análise , Aminoácidos/genética , Animais , Bovinos , Linhagem Celular , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutação , Neovascularização Fisiológica , Fator Plaquetário 4/análise , Fator Plaquetário 4/genética , Ligação Proteica , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Traffic ; 10(12): 1765-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19804566

RESUMO

Intracellular trafficking of fibroblast growth factor 2 (FGF2) exhibits two unusual features: (i) it is secreted despite the lack of signal peptide and (ii) it can translocate to the nucleus after interaction with high- and low-affinity receptors on the cell surface, although it does not possess any classical nuclear localization signal. This nuclear translocation constitutes an important part of the response to the growth factor. Previously, we identified Translokin/CEP57, an FGF2 binding partner, as an intracellular mediator of FGF2 trafficking, which is essential for the nuclear translocation of the growth factor. Here, we report the identification of four Translokin partners: sorting nexin 6, Ran-binding protein M and the kinesins KIF3A and KIF3B. These proteins, through their interaction with Translokin, are involved in two exclusive complexes allowing the bidirectional trafficking of FGF2. Thus, Translokin plays a pivotal role in this original mechanism. In addition, we show that FGF2 secretion is regulated by a negative loop, retro-controlled by FGF receptor and involving FGF2 itself.


Assuntos
Proteínas de Transporte/fisiologia , Núcleo Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células 3T3 , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , DNA Complementar , Ensaio de Imunoadsorção Enzimática , Camundongos , Transporte Proteico , RNA Interferente Pequeno , Técnicas do Sistema de Duplo-Híbrido
19.
Hepatology ; 50(6): 1871-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19877184

RESUMO

UNLABELLED: Reptin and Pontin are related ATPases associated with stoichiometric amounts in several complexes involved in chromatin remodeling, transcriptional regulation, and telomerase activity. We found that Reptin was up-regulated in hepatocellular carcinoma (HCC) and that down-regulation of Reptin led to growth arrest. We show here that Pontin messenger RNA (mRNA) is also up-regulated in human HCC 3.9-fold as compared to nontumor liver (P = 0.0004). Pontin expression was a strong independent factor of poor prognosis in a multivariate analysis. As for Reptin, depletion of Pontin in HuH7 cells with small interfering RNAs (siRNAs) led to growth arrest. Remarkably, Pontin depletion led to down-regulation of Reptin as shown with western blot, and vice versa. Whereas siRNAs induced a decrease of their cognate mRNA targets, they did not affect the transcripts of the partner protein. Translation of Pontin or Reptin was not altered when the partner protein was silenced. However, pulse-chase experiments demonstrated that newly synthesized Pontin or Reptin stability was reduced in Reptin- or Pontin-depleted cells, respectively. This phenomenon was reversed upon inhibition of proteasome or ubiquitin-activating enzyme (E1). In addition, proteasome inhibition could partly restore Pontin steady-state levels in Reptin-depleted cells, as shown by western blot. This restoration was not observed when cells were also treated with cycloheximide, thus confirming that proteasomal degradation in this setting was restricted to newly synthesized Pontin. CONCLUSION: Reptin and Pontin protein levels are strictly controlled by a posttranslational mechanism involving proteasomal degradation of newly synthesized proteins. These data demonstrate a tight regulatory and reciprocal interaction between Reptin and Pontin, which may in turn lead to the maintenance of their 1:1 stoichiometry.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Transporte/fisiologia , DNA Helicases/fisiologia , Neoplasias Hepáticas/patologia , ATPases Associadas a Diversas Atividades Celulares , Apoptose , Proteínas de Transporte/genética , Proliferação de Células , DNA Helicases/genética , Humanos , Inibidores de Proteassoma , Biossíntese de Proteínas , RNA Mensageiro/análise
20.
Nucleic Acids Res ; 37(20): e134, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19729510

RESUMO

In the last decade polycistronic vectors have become essential tools for both basic science and gene therapy applications. In order to co-express heterologous polypeptides, different systems have been developed from Internal Ribosome Entry Site (IRES) based vectors to the use of the 2A peptide. Unfortunately, these methods are not fully suitable for the efficient and reproducible modulation of the ratio between the proteins of interest. Here we describe a novel bicistronic vector type based on the use of alternative splicing. By modifying the consensus sequence that governs splicing, we demonstrate that the ratio between the synthesized proteins could easily vary from 1 : 10 to 10 : 1. We have established this system with luciferase genes and we extended its application to the production of recombinant monoclonal antibodies. We have shown that these vectors could be used in several typical cell lines with similar efficiencies. We also present an adaptation of these vectors to hybrid alternative splicing/IRES constructs that allow a ratio-controlled expression of proteins of interest in stably transfected cell lines.


Assuntos
Processamento Alternativo , Anticorpos Monoclonais/genética , Vetores Genéticos , Animais , Anticorpos Monoclonais/biossíntese , Cricetinae , Humanos , Luciferases/análise , Polirribossomos/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...