Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(21): 12328-12343, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453997

RESUMO

G-quadruplexes (G4s) are four-stranded nucleic acid structures formed by the stacking of G-tetrads. Here we investigated their formation and function during HIV-1 infection. Using bioinformatics and biophysics analyses we first searched for evolutionary conserved G4-forming sequences in HIV-1 genome. We identified 10 G4s with conservation rates higher than those of HIV-1 regulatory sequences such as RRE and TAR. We then used porphyrin-based G4-binders to probe the formation of the G4s during infection of human cells by native HIV-1. The G4-binders efficiently inhibited HIV-1 infectivity, which is attributed to the formation of G4 structures during HIV-1 replication. Using a qRT-PCR approach, we showed that the formation of viral G4s occurs during the first 2 h post-infection and their stabilization by the G4-binders prevents initiation of reverse transcription. We also used a G4-RNA pull-down approach, based on a G4-specific biotinylated probe, to allow the direct detection and identification of viral G4-RNA in infected cells. Most of the detected G4-RNAs contain crucial regulatory elements such as the PPT and cPPT sequences as well as the U3 region. Hence, these G4s would function in the early stages of infection when the viral RNA genome is being processed for the reverse transcription step.


Assuntos
Quadruplex G , HIV-1 , Humanos , RNA/química , HIV-1/genética , Sequências Reguladoras de Ácido Nucleico , Sequência Conservada
2.
J Inorg Biochem ; 223: 111551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340058

RESUMO

G-quadruplex nucleic acids (G4s) are RNA and DNA secondary structures involved in the regulation of multiple key biological processes. They can be found in telomeres, oncogene promoters, RNAs, but also in viral genomes. Due to their unique structural features, very distinct from the canonical duplexes or single-strands, G4s represent promising pharmacological targets for small molecules, namely G4-ligands. Gold(III) penta-cationic porphyrins, as specific G4 ligands, are able to inhibit HIV-1 infectivity and their antiviral activity correlates with their affinity for G4s. Up to now, one of the best antiviral compounds is meso-5,10,15,20-tetrakis[4-(N-methyl-pyridinium-2-yl)phenyl]porphyrinato gold(III) (1). Starting from this compound, we report a structure/affinity relationship study of gold(III) cationic porphyrins to find out the best porphyrin candidate for functionalization, in order to study the antiviral mechanism of action of these gold(III) porphyrins.


Assuntos
Fármacos Anti-HIV/metabolismo , DNA/metabolismo , Quadruplex G , Metaloporfirinas/metabolismo , Fármacos Anti-HIV/síntese química , DNA/genética , Ouro/química , HIV-1/química , Metaloporfirinas/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
3.
Nucleic Acids Res ; 49(13): 7695-7712, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232992

RESUMO

The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.


Assuntos
COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Quadruplex G , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Sequência de Aminoácidos , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise Espectral , Relação Estrutura-Atividade , Replicação Viral
4.
ACS Med Chem Lett ; 11(4): 464-472, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292551

RESUMO

An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC50 ≤ 13 µM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = -0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds.

5.
Int J Pharm ; 569: 118585, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31376467

RESUMO

In this work, we implemented a supramolecular approach in order to combine photodynamic therapy (PDT) with gene therapy. We made use of a simple cationic guanidylated porphyrin (H2­PG) with the hypothesis that porphyrin aggregates should be capable of complexing siRNA through multivalent interactions and thus contribute to its intracellular delivery, while remaining active photosensitizers for PDT. The PDT effect of H2­PG was shown by incubating human breast cancer cells (MDA-MB-231) with H2­PG followed by light-irradiation at 405 nm. On the other hand, while siRNA do not enter cells alone, we showed, by fluorescence confocal microscopy and flow cytometry, that H2­PG promotes the internalization of Atto-488 siRNA. Finally, studying the combined PDT and delivery of siRNA directed against inhibitory apoptotic protein (IAP) family, we found an additive effect of the two therapies, thereby demonstrating that H2­PG is capable of acting both as a photosensitizer and supramolecular siRNA vector.


Assuntos
Inativação Gênica , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Linhagem Celular Tumoral , Terapia Genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Fármacos Fotossensibilizantes/química , Porfirinas/química , RNA Interferente Pequeno/química
6.
Nucleic Acids Res ; 47(9): 4363-4374, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30923812

RESUMO

G-quadruplexes (G4) are non-canonical DNA and/or RNA secondary structures formed in guanine-rich regions. Given their over-representation in specific regions in the genome such as promoters and telomeres, they are likely to play important roles in key processes such as transcription, replication or RNA maturation. Putative G4-forming sequences (G4FS) have been reported in humans, yeast, bacteria, viruses and many organisms. Here we present the first mapping of G-quadruplex sequences in Dictyostelium discoideum, the social amoeba. 'Dicty' is an ameboid protozoan with a small (34 Mb) and extremely AT rich genome (78%). As a consequence, very few G4-prone motifs are expected. An in silico analysis of the Dictyostelium genome with the G4Hunter software detected 249-1055 G4-prone motifs, depending on G4Hunter chosen threshold. Interestingly, despite an even lower GC content (as compared to the whole Dicty genome), the density of G4 motifs in Dictyostelium promoters and introns is significantly higher than in the rest of the genome. Fourteen selected sequences located in important genes were characterized by a combination of biophysical and biochemical techniques. Our data show that these sequences form highly stable G4 structures under physiological conditions. Five Dictyostelium genes containing G4-prone motifs in their promoters were studied for the effect of a new G4-binding porphyrin derivative on their expression. Our results demonstrated that the new ligand significantly decreased their expression. Overall, our results constitute the first step to adopt Dictyostelium discoideum as a 'G4-poor' model for studies on G-quadruplexes.


Assuntos
Dictyostelium/genética , Quadruplex G , Porfirinas/genética , Regiões Promotoras Genéticas , Simulação por Computador , Genoma/genética , Conformação de Ácido Nucleico , Telômero/genética
7.
Dalton Trans ; 48(18): 6091-6099, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30860519

RESUMO

Porphyrins represent a valuable class of ligands for G-quadruplex nucleic acids. Herein, we evaluate the binding of cationic porphyrins metallated with gold(iii) to G-quadruplex DNA and we compare it with other porphyrin derivatives. The G-quadruplex stabilization capacity and the selectivity of the various porphyrins were evaluated by biophysical and biochemical assays. The porphyrins were also tested as inhibitors of telomerase. It clearly appeared that the insertion of gold(iii) ion in the center of the porphyrin increases the binding affinity of the porphyrin for the G-quadruplex target. Together with modelling studies, it is possible to propose that the insertion of the square planar gold(iii) ion adds an extra positive charge on the complex and decreases the electron density in the porphyrin aromatic macrocycle, both properties being in favour of stronger electrostatic and π-staking interactions.

8.
Biomolecules ; 8(4)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441840

RESUMO

Oxidative RNA damage is linked to cell dysfunction and diseases. The present work focuses on the in vitro oxidation of 5-methylaminomethyl uridine (mnm5U), which belongs to the numerous post-transcriptional modifications that are found in tRNA. The reaction of oxone with mnm5U in water at pH 7.5 leads to two aldonitrone derivatives. They form by two oxidation steps and one dehydration step. Therefore, the potential oxidation products of mnm5U in vivo may not be only aldonitrones, but also hydroxylamine and imine derivatives (which may be chemically more reactive). Irradiation of aldonitrone leads to unstable oxaziridine derivatives that are susceptible to isomerization to amide or to hydrolysis to aldehyde derivative.


Assuntos
Aldeídos/química , Ácidos Sulfúricos/farmacologia , Uridina/análogos & derivados , Escuridão , Conformação Molecular , Oxirredução , Processos Fotoquímicos , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta , Uridina/metabolismo
9.
ChemMedChem ; 13(20): 2217-2228, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30221468

RESUMO

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 µm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 µm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.


Assuntos
Nitroquinolinas/farmacologia , Quinolonas/farmacologia , Tripanossomicidas/farmacologia , Catálise , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Estrutura Molecular , Nitroquinolinas/síntese química , Nitroquinolinas/química , Nitroquinolinas/toxicidade , Paládio/química , Testes de Sensibilidade Parasitária , Quinolonas/síntese química , Quinolonas/química , Quinolonas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/toxicidade , Trypanosoma brucei brucei/efeitos dos fármacos
10.
Biomacromolecules ; 19(10): 4068-4074, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30204420

RESUMO

Incorporating charged amino acid side chains in polypeptide polymer backbones to improve solubility usually leads to reduced secondary structuring. Here we show that highly water soluble (>15 mg.mL-1) ß-sheets can be obtained via nucleotide monophosphate grafting onto simple poly(γ-propargyl- L-glutamate) backbone. This synthetic methodology has been applied to the synthesis of thymidine-based nucleopolypeptides presenting stable ß-sheet conformation in aqueous solutions with pH values comprised between 4 and 8. These polymeric analogues of nucleoproteins exhibited selective interaction with simple DNA sequences displaying adenine.


Assuntos
DNA/química , DNA/metabolismo , Peptídeos/química , Polímeros/química , Água/química , Concentração de Íons de Hidrogênio , Íons , Modelos Moleculares , Estrutura Molecular , Conformação Proteica em Folha beta
11.
Eur J Med Chem ; 157: 115-126, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30092366

RESUMO

Based on a previously identified antileishmanial 6,8-dibromo-3-nitroimidazo[1,2-a]pyridine derivative, a Suzuki-Miyaura coupling reaction at position 8 of the scaffold was studied and optimized from a 8-bromo-6-chloro-3-nitroimidazo[1,2-a]pyridine substrate. Twenty-one original derivatives were prepared, screened in vitro for activity against L. infantum axenic amastigotes and T. brucei brucei trypomastigotes and evaluated for their cytotoxicity on the HepG2 human cell line. Thus, 7 antileishmanial hit compounds were identified, displaying IC50 values in the 1.1-3 µM range. Compounds 13 and 23, the 2 most selective molecules (SI = >18 or >17) were additionally tested on both the promastigote and intramacrophage amastigote stages of L. donovani. The two molecules presented a good activity (IC50 = 1.2-1.3 µM) on the promastigote stage but only molecule 23, bearing a 4-pyridinyl substituent at position 8, was active on the intracellular amastigote stage, with a good IC50 value (2.3 µM), slightly lower than the one of miltefosine (IC50 = 4.3 µM). The antiparasitic screening also revealed 8 antitrypanosomal hit compounds, including 14 and 20, 2 very active (IC50 = 0.04-0.16 µM) and selective (SI = >313 to 550) molecules toward T. brucei brucei, in comparison with drug-candidate fexinidazole (IC50 = 0.6 & SI > 333) or reference drugs suramin and eflornithine (respective IC50 = 0.03 and 13.3 µM). Introducing an aryl moiety at position 8 of the scaffold quite significantly increased the antitrypanosomal activity of the pharmacophore. Antikinetoplastid molecules 13, 14, 20 and 23 were assessed for bioactivation by parasitic nitroreductases (either in L. donovani or in T. brucei brucei), using genetically modified parasite strains that over-express NTRs: all these molecules are substrates of type 1 nitroreductases (NTR1), such as those that are responsible for the bioactivation of fexinidazole. Reduction potentials measured for these 4 hit compounds were higher than that of fexinidazole (-0.83 V), ranging from -0.70 to -0.64 V.


Assuntos
Antineoplásicos/farmacologia , Leishmania donovani/efeitos dos fármacos , Nitrorredutases/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Leishmania donovani/metabolismo , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/metabolismo
12.
Eur J Med Chem ; 155: 135-152, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29885575

RESUMO

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.


Assuntos
Antiprotozoários/farmacologia , Técnicas Eletroquímicas , Kinetoplastida/efeitos dos fármacos , Nitroquinolinas/farmacologia , Nitrorredutases/metabolismo , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Kinetoplastida/enzimologia , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Estrutura Molecular , Nitroquinolinas/síntese química , Nitroquinolinas/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
13.
J Inorg Biochem ; 179: 71-81, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175704

RESUMO

The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite. A redox-mediated activation of isoniazid using an iron metal complex was previously proposed as a strategy to overcome isoniazid resistance due to KatG mutations. Here, we have prepared a series of iron metal complexes with isoniazid and analogues, containing alkyl substituents at the hydrazide moiety, and also with pyrazinamide derivatives. These complexes were activated by H2O2 and studied by ESR and LC-MS. For the first time, the formation of the oxidized INH-NAD adduct from the pentacyano(isoniazid)ferrate(II) complex was detected by LC-MS, supporting a redox-mediated activation, for which a mechanistic proposition is reported. ESR data showed all alkylated hydrazides, in contrast to non-substituted hydrazides, only generated alkyl-based radicals. The structural modifications did not improve minimal inhibitory concentration (MIC) against MTB in comparison to isoniazid iron complex, providing support to isonicotinoyl radical formation as a requirement for activity. Nonetheless, the pyrazinoic acid hydrazide iron complex showed redox-mediated activation using H2O2 with generation of a pyrazinoyl radical intermediate and production of pyrazinoic acid, which is in fact the active metabolite of pyrazinamide prodrug. Thereby, this strategy can also unveil new opportunities for activation of this type of drug.


Assuntos
Antituberculosos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Ferrosos/farmacologia , Isoniazida/análogos & derivados , Isoniazida/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Isoniazida/síntese química , Isoniazida/química , Testes de Sensibilidade Microbiana , Modelos Químicos , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredução
14.
Dalton Trans ; 46(36): 12088-12094, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28853461

RESUMO

The high-valent manganese-oxo species of Mn-TMPyP4 porphyrin interacts in the minor grooves of AT-rich regions of DNA and mediates hydroxylation of C-H bonds of deoxyribose leading to DNA break. The reaction was observed at different pHs. It is shown that the hydroxylation was not efficient at low pH (pH 6) while it worked well at higher pH (pH 8). Deprotonation of the coordinated water molecule, trans to the manganese-oxo entity, into a hydroxide anion drives high-valent manganese-oxo porphyrin toward hydroxylation at pH > 7.

15.
Chem Commun (Camb) ; 53(54): 7501-7504, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28628166

RESUMO

Synthetic polypeptides are versatile polymers outstandingly relevant to prepare bioinspired materials. In this work, we present a new class of smart polypeptide polymers, called nucleopolypeptides, having lateral chains functionalized with thymidine nucleobases. Structural studies performed by circular dichroism have revealed that the secondary structure of the polymers was influenced by nucleotide interaction and DNA sequence variation affording a selective helix-to-beta sheet transition with oligo(AAAAA)6.


Assuntos
DNA/química , Peptídeos/química , Dicroísmo Circular , Estrutura Secundária de Proteína
16.
Polymers (Basel) ; 9(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30970954

RESUMO

Polypeptide polymers can adopt natural protein secondary structures such as α-helices or ß-sheets, and this unique feature is at the origin of some intriguing physico⁻chemical properties. In this work, we present how side chain imidazoylation of a poly(l-lysine) scaffold affords the preparation of poly(histidine) counterparts exhibiting α-helix conformation. This structuring behavior is reversible and can be controlled by means of pH and or temperature changes.

17.
Org Biomol Chem ; 14(37): 8848-8858, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27714216

RESUMO

Ethionamide (ETH), a second-line anti-tubercular drug that is regaining a lot of interest due to the increasing cases of drug-resistant tuberculosis, is a pro-drug that requires an enzymatic activation step to become active and to exert its therapeutic effect. The enzyme responsible for ETH bioactivation in Mycobacterium tuberculosis is a monooxygenase (EthA) that uses flavin adenine dinucleotide (FAD) as a cofactor and is NADPH- and O2-dependant to exert its catalytic activity. In this work, we investigated the activation of ETH by various oxygen-donor oxidants and the first biomimetic ETH activation methods were developed (KHSO5, H2O2, and m-CPBA). These simple oxidative systems, in the presence of ETH and NAD+, allowed the production of short-lived radical species and the first non-enzymatic formation of active and non-active ETH metabolites. The intermediates and the final compounds of the activation pathway were well characterized. Based on these results, we postulated a consistent mechanism for ETH activation, not involving sulfinic acid as a precursor of the iminoyl radical, as proposed so far, but putting forward a novel reactivity for the S-oxide ethionamide intermediate. We proposed that ETH is first oxidized into S-oxide ethionamide, which then behaves as a "ketene-like" compound via a formal [2 + 2] cycloaddition reaction with peroxide to give a dioxetane intermediate. This unstable 4-membered intermediate in equilibrium with its open tautomeric form decomposes through different pathways, which would explain the formation of the iminoyl radical and also that of different metabolites observed for ETH oxidation, including the ETH-NAD active adduct. The elucidation of this unprecedented ETH activation mechanism was supported by the application of isotopic labelling experiments.


Assuntos
Antituberculosos/metabolismo , Etionamida/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases/metabolismo , Pró-Fármacos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Biomimética , Etionamida/farmacologia , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidantes/metabolismo , Pró-Fármacos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
18.
Chem Biol Drug Des ; 88(5): 740-755, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27301022

RESUMO

Inhibitors of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA) are considered as potential promising therapeutics for the treatment of tuberculosis. Previously, we reported that azaisoindolinone-type compounds displayed, in vitro, inhibitory activity toward InhA. Herein, we describe chemical modifications of azaisoindolinone scaffold, the synthesis of 15 new compounds and their evaluations toward the in vitro InhA activity. Based on these results, a structure-InhA inhibitory activity relationship analysis and a molecular docking study, using the conformation of InhA found in the 2H7M crystal structure, were carried out to predict a possible mode of interaction of the best (aza)isoindolinone-type inhibitors with InhA in vitro. Then, the work was extended toward evaluations of these compounds against Mycobacterium tuberculosis (Mtb) growth, and finally, some of them were also investigated in respect of their ability to inhibit mycolic acid biosynthesis inside mycobacteria. Although, some azaisoindolinones were able to inhibit InhA activity and Mtb growth in vitro, they did not inhibit the mycolic acid biosynthesis inside Mtb.


Assuntos
Antituberculosos/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Ácidos Micólicos/metabolismo , Antituberculosos/síntese química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Isoindóis/síntese química , Isoindóis/química , Isoindóis/metabolismo , Isoindóis/farmacologia , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Termodinâmica
19.
Chemphyschem ; 16(18): 3877-85, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26456707

RESUMO

We performed a systematic study on the spectroscopic and aggregation properties of stoichiometric mixtures (1:4) of the tetracationic meso-tetrakis(4-N-methylpyridinium)porphyrin (H2 TMPyP) and three sodium alkylsulfate surfactants (tetradecyl, hexadecyl, and octadecylsulfate) in an aqueous solution. The objective was to build a supramolecular aggregate, which would favor the internalization of tetracationic porphyrins in cells without chemical modification of the structure of the porphyrin. We show that stoichiometric H2 TMPyP/alkylsulfate (1:4) mixtures lead to the formation of large hollow spherical aggregates (60-160 nm). The TEM images show that the membrane of these aggregates are composed of smaller aggregates, which are probably rod-like micelles. These rod-like micelles have a hydrophobic core composed of the alkyl chains of the alkylsulfate surfactant, whereas the charged surface corresponds to the tetracationic porphyrins.


Assuntos
Porfirinas/química , Tensoativos/química , Ânions , Cátions , Microscopia Eletrônica de Transmissão , Espectroscopia de Prótons por Ressonância Magnética , Água/química
20.
J Struct Biol ; 190(3): 328-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25891098

RESUMO

InhA is an enoyl-ACP reductase of Mycobacterium tuberculosis implicated in the biosynthesis of mycolic acids, essential constituents of the mycobacterial cell wall. To date, this enzyme is considered as a promising target for the discovery of novel antitubercular drugs. In this work, we describe the first crystal structure of the apo form of the wild-type InhA at 1.80Å resolution as well as the crystal structure of InhA in complex with the synthetic metabolite of the antitubercular drug isoniazid refined to 1.40Å. This metabolite, synthesized in the absence of InhA, is able to displace and replace the cofactor NADH in the enzyme active site. This work provides a unique opportunity to enlighten the structural adaptation of apo-InhA to the binding of the NADH cofactor or of the isoniazid adduct. In addition, a differential scanning fluorimetry study of InhA, in the apo-form as well as in the presence of NAD(+), NADH and INH-NADH was performed showing that binding of the INH-NADH adduct had a strong stabilizing effect.


Assuntos
Proteínas de Bactérias/química , Isoniazida/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Biomimética/métodos , Domínio Catalítico , NAD/química , Ligação Proteica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...