Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1379877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756968

RESUMO

Introduction: Selenium (Se) deficiency, stemming from malnutrition in humans and animals, has the potential to disrupt many vital physiological processes, particularly those reliant on specific selenoproteins. Agronomic biofortification of crops through the application of Se-containing sprays provides an efficient method to enhance the Se content in the harvested biomass. An optimal candidate for systematic enrichment, guaranteeing a broad trophic impact, must meet several criteria: (i) efficient accumulation of Se without compromising crop yield, (ii) effective conversion of mineral Se fertilizer into usable organically bound Se forms (Seorg), (iii) acceptance of a Se-enriched crop as livestock feed, and (iv), interest from the food processing industry in utilization of Se-enriched outputs. Hence, priority should be given to high-protein leafy crops, such as soybean. Methods: A three-year study in the Czech Republic was conducted to investigate the response of field-grown soybean plants to foliar application of Na2SeO4 solutions (0, 15, 40, and 100 g/ha Se); measured outcomes included crop yield, Se distribution in aboveground biomass, and the chemical speciation of Se in seeds. Results and Discussion: Seed yield was unaffected by applied SeO4 2-, with Se content reaching levels as high as 16.2 mg/kg. The relationship between SeO4 2-dose and Se content in seeds followed a linear regression model. Notably, the soybeans demonstrated an impressive 73% average recovery of Se in seeds. Selenomethionine was identified as the predominant species of Se in enzymatic hydrolysates of soybean, constituting up to 95% of Seorg in seeds. Minor Se species, such as selenocystine, selenite, and selenate, were also detected. The timing of Se spraying influenced both plant SeO4 2- biotransformation and total content in seeds, emphasizing the critical importance of optimizing the biofortification protocol. Future research should explore the economic viability, long-term ecological sustainability, and the broad nutritional implications of incorporating Se-enriched soybeans into food for humans and animals.

2.
Environ Toxicol Chem ; 43(2): 288-298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988263

RESUMO

Honey bees (Apis mellifera L.) represent a random biosampler integrating pollutants over space and time. An effective biomonitor for trace element (TE) pollution should provide a linear response to TE levels in the environment. However, uncertainties in detecting TEs originating in soil limit their use. To address this, nine experimental sites with multiple apiaries were established in the Upper Palatine Forest, Czech Republic. The soils surrounding the hives were characterized by estimations of the pseudototal and (bio)available pools of TEs. Our study aimed to (1) quantify the linear relationships between soil TE indices and TE contents in bees, bee bread, honey, and wax, and (2) verify the biobarrier function protecting honey from TE contamination. Lead (0.046-0.140 µg g-1 ) and nickel (0.12-4.30 µg g-1 ) contents in bees showed strong linear correlations with (bio)available Pb (0.012-0.254 µg g-1 ) and pseudototal Ni (17.1-36.4 µg g-1 ) in soil (Pearson's r = 0.95 and 0.88, p < 0.005), providing high spatial resolution. A weaker, insignificant correlation was observed for chromium (Cr; r = 0.65) and vanadium (V; 0.44), while no correlation was found for cadmium (Cd). However, the lack of associations for Cr, V, and Cd may result from the low soil TE levels in the region, negligible differences among the majority of sites, and temporal concerns related to different time scales of the biomonitors, impacting the linear model's sensitivity. Biochemical traits in bees, such as the biobarrier function, and different bioavailability of TEs from ingested matter may affect the matrix-to-matrix transfer of TEs in an element-dependent manner. Consequently, the linear response of bee-related biomonitors to TE levels in the environment may significantly deteriorate. Environ Toxicol Chem 2024;43:288-298. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Metais Pesados , Oligoelementos , Abelhas , Animais , Oligoelementos/análise , Solo/química , Cádmio , Monitoramento Ambiental , Meio Ambiente , Metais Pesados/análise
3.
Toxics ; 11(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505533

RESUMO

Experimental spinach plants grown in soil with (5, 10 and 20 ppm) arsenic (As) contamination were sampled in 21 days after As(V) contamination. Levels of As in spinach samples (from 0.31 ± 0.06 µg g-1 to 302.69 ± 11.83 µg g-1) were higher in roots and lower in leaves, which indicates a low ability of spinach to translocate As into leaves. Species of arsenic, As(III) and As(V), were represented in favor of the As (III) specie in contaminated variants, suggesting enzymatic arsenate reduction. In relation to predominant As accumulation in roots, changes in malondialdehyde levels were observed mainly in roots, where they decreased significantly with growing As contamination (from 11.97 ± 0.54 µg g-1 in control to 2.35 ± 0.43 µg g-1 in 20 ppm As). Higher values in roots than in leaves were observed in the case of 5-methylcytosine (5-mC). Despite that, a change in 5-mC by As contamination was further deepened in leaves (from 0.20 to 14.10%). In roots of spinach, expression of the CDC25 gene increased by the highest As contamination compared to the control. In the case of total phenolic content, total flavonoid content, total phenolic acids content and total antioxidant capacity were higher levels in leaves in all values, unlike the roots.

4.
Sci Total Environ ; 892: 164712, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301381

RESUMO

Emerging contaminants and their pervasive presence in freshwater ecosystems have been widely documented, but less is known about their prevalence and the harm they cause in marine ecosystems, particularly in developing countries. This study provides data on the prevalence and risk posed by microplastics, plasticisers, pharmaceuticals and personal care products (PPCPs), and heavy metal(loid)s (HMs) along the Maharashtra coast of India. The sediment and coastal water samples were collected from 17 sampling stations, processed, and subjected to FTIR-ATR, ICP-MS, SEM-EDX, LC-MS/MS, and GC-MS for further analysis. Higher MPs abundance, combined with the pollution load index, indicates that the northern zone is a high-impact zone with pollution concerns. Plasticisers in extracted MPs and HMs adsorption on MPs surface from surrounding waters reveal their roles as a source and vector for contaminants, respectively. The mean concentration of metoprolol (53.7-306 ng L-1), tramadol (16.6-198 ng L-1), venlafaxine (24.6-234 ng L-1), and triclosan (211-433 ng L-1) in Maharashtra's coastal waters were several folds higher than in other water systems, raising major health concerns. The hazard quotient (HQ) scores revealed that >70 % of study sites pose a high to medium (1 > HQ > 0.1) ecological risk to fish, crustaceans and algae, indicating serious concern. Fish and crustaceans (35.3 % each) show a higher level of risk than algae (29.5 %). Metoprolol and venlafaxine could represent greater ecological risks than tramadol. Similarly, HQ suggests that bisphenol A has larger ecological risks than bisphenol S along the Maharashtra coast. To the best of our knowledge, this is the first in-depth investigation into emerging pollutants in Indian coastal regions. This information is crucial for better policy formulation and coastal management in India in general, and Maharashtra in particular.


Assuntos
Cosméticos , Metais Pesados , Tramadol , Poluentes Químicos da Água , Animais , Microplásticos/análise , Ecossistema , Água/análise , Plásticos/análise , Sedimentos Geológicos , Cromatografia Líquida , Metoprolol , Cloridrato de Venlafaxina , Poluentes Químicos da Água/análise , Índia , Espectrometria de Massas em Tandem , Metais Pesados/análise , Medição de Risco , Cosméticos/análise , Preparações Farmacêuticas , Monitoramento Ambiental
5.
Chemosphere ; 328: 138605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028715

RESUMO

The study was aimed to conduct the bioremediation of synthetic musks by four species of white rot fungi combined with phytoremediation (Zea mays) in biosolid-amended soils where only Galaxolide (HHCB) and Tonalide (AHTN) were found as other musks were below the detection limit (0.5-2 µg/kg dw). The HHCB and AHTN concentration in natural attenuation treated soil was decreased by not more than 9%. In solely mycoremediation, Pleurotus ostreatus was found to be the most efficient fungal strain, with the higher (P < 0.05) HHCB and AHTN removal (51.3% and 46.4%). Phytoremediation-only of biosolid-amended soil was also able to remove HHCB and AHTN from soil significantly (P < 0.05) in comparison to the control treatment without plants which resulted in the final concentration for both compounds of 56.2 and 15.3 µg/kg dw, respectively. Using white rot fungus-assisted phytoremediation, only P. ostreatus decreased the HHCB content in soil significantly (P < 0.05) by 44.7%, when compared to the initial concentration. While using Phanerochaete chrysosporium, the AHTN concentration was decreased by 34.5%, which was a significantly lower concentration at the end of experiment compared to the initial value. Via fungus-assisted phytoremediation, the enzymatic activity and fungal biomass were increased, probably due to the presence of roots in association with the soil microbiome, in the process increasing the degradation of fragrances accordingly. This could lead to a higher (P < 0.05) AHTN removal in P. chrysosporium assisted phytoremediation. Estimated HHCB and AHTN bioaccumulation factors in maize were lower than 1, therefore no environmental risk would be posed.


Assuntos
Basidiomycota , Poluentes Químicos da Água , Biodegradação Ambiental , Biossólidos , Tetra-Hidronaftalenos/análise , Benzopiranos/análise , Poluentes Químicos da Água/análise
6.
Toxics ; 11(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977002

RESUMO

Arsenic represents a serious health threat in localities with a high arsenic-polluted environment and can easily get into the human food chain through agronomy production in areas affected by arsenic contamination. Onion plants that were grown in controlled conditions in arsenic-contaminated soil (5, 10, and 20 ppm) were harvested 21 days after contamination. Arsenic levels (from 0.43 ± 0.03 µg g-1 to 1761.11 ± 101.84 µg g-1) in the onion samples were high in the roots and low in the bulbs and leaves, which is probably caused by a reduced ability of the onions to transport arsenic from roots to bulbs and leaves. Arsenic species As(V) and As(III) in As(V)-contaminated soil samples were represented strongly in favor of the As(III) species. This indicates the presence of arsenate reductase. Levels of 5-methylcytosine (5-mC) (from 5.41 ± 0.28% to 21.17 ± 1.33%) in the onion samples were also higher in the roots than in the bulbs and leaves. Microscopic sections of the roots were examined, and the most damage was found in the 10 ppm As variant. Photosynthetic parameters pointed to a significant decrease in photosynthetic apparatus activity and the deterioration of the physiological state of plants as arsenic content increased in the soil.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36459627

RESUMO

Introduction: The use of Cannabis sativa L. in health care requires stringent care for the optimal production of the bioactive compounds. However, plant phenotypes and the content of secondary metabolites, such as phytocannabinoids, are strongly influenced by external factors, such as nutrient availability. It has been shown that phytocannabinoids can exhibit selective cytotoxicity against various cancer cell lines while protecting healthy tissue from apoptosis. Research Aim: This study aimed to clarify the cytotoxic effect of cannabis extracts on colorectal cell lines by identifying the main active compounds and determining their abundance and activity across all developmental stages of medical cannabis plants cultivated under hydroponic conditions. Materials and Methods: Dimethyl sulfoxide extracts of medical cannabis plants bearing the genotype classified as chemotype I were analyzed by high-performance liquid chromatography, and their cytotoxic activity was determined by measuring cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay on the human colon cancer cell lines, Caco-2 and HT-29, and the normal human epithelial cell line, CCD 841 CoN. Results: The most abundant phytocannabinoid in cannabis extracts was tetrahydrocannabinolic acid (THCA). Its maximum concentrations were reached from the 7th to the 13th plant vegetation week, depending on the nutritional cycle and treatment. Almost all extracts were cytotoxic to the human colorectal cancer (CRC) cell line HT-29 at lower concentrations than the other cell lines. The phytocannabinoids that most affected the cytotoxicity of individual extracts on HT-29 were cannabigerol, Δ9-tetrahydrocannabinol, cannabidiol, cannabigerolic acid, and THCA. The tested model showed almost 70% influence of these cannabinoids. However, THCA alone influenced the cytotoxicity of individual extracts by nearly 65%. Conclusions: Phytocannabinoid extracts from plants of the THCA-dominant chemotype interacted synergistically and showed selective cytotoxicity against the CRC cell line, HT-29. This positive extract response indicates possible therapeutic value.

8.
Acta Vet Hung ; 70(4): 296-304, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36350570

RESUMO

Although domestic cats are one of the most popular companion animals, current knowledge on the fate of micronutrients in cats according to their age, sex, and health is very limited. In this study, 72 whole blood and 54 plasma samples from cats of different ages and sex were collected at three veterinary offices in the Czech Republic, and the copper (Cu), selenium (Se), and zinc (Zn) concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that Cu was significantly (P < 0.05) higher in both plasma and whole blood of males (980 and 958 µg L-1 in plasma and whole blood, respectively) than in females (741 and 766 µg L-1 in plasma and whole blood, respectively), whereas no significant differences between males and females were found for Se and Zn. Similarly, no significant differences were recorded for any of the three elements according to age, although animals older than 7 years tended to have lower plasma concentrations of all three elements. Hypertrophic cardiomyopathy (HCM) is one of the most prevalent diseases of domestic cats. The potential relationship between the essential microelement status in the blood of cats with HCM vs. cats with no clinical signs of HCM was taken into account, but the limited number of HCM-positive individuals did not allow any clear conclusion. Thus, the potential relationships between micronutrient status in cats and the incidence of HCM should be elucidated in further research.


Assuntos
Selênio , Oligoelementos , Masculino , Feminino , Gatos , Animais , Zinco , Cobre
9.
Sci Rep ; 12(1): 13495, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931715

RESUMO

Mining and smelting activities can contaminate soils and affect farming due to high emissions and input of potentially toxic elements (PTE) into the environment. Soils (sampled from two depths) and market vegetables from vegetable gardens located within the vicinity of unconfined slag deposits from decades of mining and smelting activities in Kutná Hora, Czechia were assessed to determine to what extent they pose a health hazard to communities that use these gardens. Pseudo-total As concentrations in the soils exceeded background levels (4.5 mg kg-1) 1.9-93 times, with higher concentrations in the deeper layer. The pseudo-total concentrations of PTE in soils ranked in the order As > Zn > Cd > Pb. Phyto-available concentrations of PTE in soils were relatively low, compared to pseudo-total concentrations. Concentration of As, Cd, Pb and Zn in the vegetables exceeded guideline values, with the highest concentrations found in the fruits of cucumber, peppers, and zucchini. Despite low phyto-available PTE concentrations in soils, all the PTE concentrations in the vegetables surpassed the guidelines set by the Czech Ministry of Health and EU directive, indicating a health hazard to consumers.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio , China , Monitoramento Ambiental , Jardins , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras , Zinco/análise
10.
Front Plant Sci ; 13: 868350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432432

RESUMO

There is growing evidence to support the involvement of nutrients and biostimulants in plant secondary metabolism. Therefore, this study evaluated the potential of amino acid-based supplements that can influence different hydroponic nutrient cycles (systems) to enhance the cannabinoid and terpene profiles of medical cannabis plants. The results demonstrate that amino acid biostimulation significantly affected ion levels in different plant tissues (the "ionome"), increasing nitrogen and sulfur content but reducing calcium and iron content in both nutrient cycles. A significantly higher accumulation of nitrogen and sulfur was observed during the recirculation cycle, but the calcium level was lower in the whole plant. Medical cannabis plants in the drain-to-waste cycle matured 4 weeks earlier, but at the expense of a 196% lower maximum tetrahydrocannabinolic acid yield from flowers and a significantly lower concentration of monoterpene compounds than in the recirculation cycle. The amino acid treatments reduced the cannabinolic acid content in flowers by 44% compared to control in both nutritional cycles and increased the monoterpene content (limonene) up to 81% in the recirculation cycle and up to 123% in the drain-to-waste cycle; ß-myrcene content was increased up to 139% in the recirculation cycle and up to 167% in the drain-to-waste cycle. Our results suggest that amino acid biostimulant supplements may help standardize the content of secondary metabolites in medical cannabis. Further experiments are needed to identify the optimal nutrient dosage and method of administration for various cannabis chemotypes grown in different media.

11.
J Environ Sci (China) ; 76: 249-258, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528015

RESUMO

A 120-day experiment was conducted to compare the removal of polycyclic aromatic hydrocarbons (PAHs) from agricultural soil after natural attenuation (NA), phytoremediation (P), mycoremediation (M), and plant-assisted mycoremediation (PAM) approaches in relation to the extracellular enzyme activities in soil. The NA treatment removed the total soil PAH content negligibly. The P treatment using maize (Zea mays) enhanced only the removal of low and medium molecular PAHs. The Pleurotus ostreatus cultivated on 30-50 mm wood chip substrate used in M treatment was the most successful in the removal of majority PAHs. Therefore, significantly (p < 0.05) highest total PAH removal by 541.4 µg/kg dw (dry weight) (36%) from all tested M treatments was observed. When using the same fungal substrate together with maize in PAM treatment, the total PAH removal was not statistically different from the previous M treatment. However, the maize-assisted mycoremediation treatment significantly boosted fungal biomass, microbial and manganese peroxidase activity in soil which strongly correlated with the removal of total PAHs. The higher PAH removal in that PAM treatment could be reflected in the following post-harvest time. Our suggested M and PAM approaches could be promising in situ bioremediation strategies for PAH-contaminated soils.


Assuntos
Espaço Extracelular/enzimologia , Peroxidases/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , Biomassa , Pleurotus/citologia , Pleurotus/metabolismo , Zea mays/citologia , Zea mays/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-26414440

RESUMO

A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).


Assuntos
Brassica/metabolismo , Cistina/análogos & derivados , Compostos Organosselênicos/isolamento & purificação , Compostos de Selênio/metabolismo , Selenocisteína/análogos & derivados , Selenometionina/metabolismo , Transporte Biológico , Brassica/efeitos dos fármacos , Cátions Bivalentes/metabolismo , Cátions Monovalentes/metabolismo , Cistina/isolamento & purificação , Cistina/metabolismo , Flores/efeitos dos fármacos , Flores/metabolismo , Compostos Organosselênicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Compostos de Selênio/isolamento & purificação , Compostos de Selênio/farmacologia , Selenocisteína/isolamento & purificação , Selenocisteína/metabolismo , Selenometionina/isolamento & purificação , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA