Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540722

RESUMO

Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied NLRP1 expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmann's area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the NLRP1 mRNA expression was significantly higher than in six control brains (p < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (p < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Córtex Cerebral/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo
2.
CNS Neurosci Ther ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341072

RESUMO

BACKGROUND: The primary histological characteristic of Alzheimer's disease is the presence of neurofibrillary tangles, which are large aggregates of tau protein. Aging is the primary risk factor for the development of Alzheimer's disease, however, the underlying causes of tau protein aggregation and toxicity are unclear. AIMS: Here we investigated tau aggregation and toxicity under the conditions of compromised protein homeostasis. METHODS: We used heterologous expression of human tau protein in the unicellular eukaryote yeast Saccharomyces cerevisiae with evolutionarily conserved protein quality control pathways and examined tau-dependent toxicity and aggregation using growth assays, fluorescence microscopy, and a split luciferase-based reporter NanoBiT. RESULTS: Tau protein expressed in yeast under mild proteotoxic stress, or in mutants with impaired pathways for proteotoxic stress response, did not lead to synthetic toxicity or the formation of obvious aggregates. Chronologically old cells also did not develop observable tau aggregates. Our examination of tau oligomerization in living cells using NanoBiT reporter suggests that tau does not form significant levels of oligomers under basal conditions or under mild proteotoxic stress. CONCLUSION: Together our data suggest that human tau protein does not represent a major burden to the protein quality control system in yeast cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA