Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Epigenetics ; 15(1): 129, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568218

RESUMO

BACKGROUND: Stunting is a global health problem affecting hundreds of millions of children worldwide and contributing to 45% of deaths in children under the age of five. Current therapeutic interventions have limited efficacy. Understanding the epigenetic changes underlying stunting will elucidate molecular mechanisms and likely lead to new therapies. RESULTS: We profiled the repressive mark histone H3 lysine 9 trimethylation (H3K9me3) genome-wide in peripheral blood mononuclear cells (PBMCs) from 18-week-old infants (n = 15) and mothers (n = 14) enrolled in the PROVIDE study established in an urban slum in Bangladesh. We associated H3K9me3 levels within individual loci as well as genome-wide with anthropometric measurements and other biomarkers of stunting and performed functional annotation of differentially affected regions. Despite the relatively small number of samples from this vulnerable population, we observed globally elevated H3K9me3 levels were associated with poor linear growth between birth and one year of age. A large proportion of the differentially methylated genes code for proteins targeting viral mRNA and highly significant regions were enriched in transposon elements with potential regulatory roles in immune system activation and cytokine production. Maternal data show a similar trend with child's anthropometry; however, these trends lack statistical significance to infer an intergenerational relationship. CONCLUSIONS: We speculate that high H3K9me3 levels may result in poor linear growth by repressing genes involved in immune system activation. Importantly, changes to H3K9me3 were detectable before the overt manifestation of stunting and therefore may be valuable as new biomarkers of stunting.


Assuntos
Metilação de DNA , Histonas , Feminino , Humanos , Lactente , Criança , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Leucócitos Mononucleares/metabolismo , Transtornos do Crescimento/genética , Transtornos do Crescimento/epidemiologia
2.
Mol Cell ; 77(2): 205-206, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31951544

RESUMO

Glastad et al. (2019) describe a role for the neuronal CoREST corepressor and changes in juvenile hormone (JH) and ecdysone signaling during the reprogramming of social behavioral phenotypes in ants that are reflective of a natural mechanism differentiating "Major" and "Minor" worker ants.


Assuntos
Formigas , Animais , Ecdisona , Epigênese Genética , Hormônios Juvenis , Comportamento Social
3.
Artigo em Inglês | MEDLINE | ID: mdl-32832935

RESUMO

The post-translational acetylation of the histone components of chromatin mediates numerous DNA-templated events, including transcriptional activation, DNA repair, and genomic replication. The conserved SAGA (Spt-Ada-Gcn5 Acetyltranferase) and SLIK (SAGA-Like) Histone Acetyltransferase (HAT) complexes are required for transcriptional activation of a subset of yeast genes and contain multiple subunits including the histone fold-containing TBP- Associated Factors (TAFs): 6, 9, 10, and 12. These TAFs are also components of the TFIID complex and are consequently involved in most RNA polymerase II-transcription in yeast. Here we identify a novel conserved region of TAF12, termed ReNu, outside of its histone fold, which is required for SAGA and SLIK-directed nucleosomal acetylation. We demonstrate that this region is not required for chromatin association, but show that this region plays an important role for histone H3 acetylation at specific SAGA and SLIK-regulated promoters. Our data suggests that the ReNu region of TAF12 regulates Gcn5 acetylation of specific substrates within the SAGA super-family of HAT complexes.

4.
Proc Natl Acad Sci U S A ; 115(48): E11264-E11273, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420518

RESUMO

Chronically undernourished children become stunted during their first 2 years and thereafter bear burdens of ill health for the rest of their lives. Contributors to stunting include poor nutrition and exposure to pathogens, and parental history may also play a role. However, the epigenetic impact of a poor environment on young children is largely unknown. Here we show the unfolding pattern of histone H3 lysine 4 trimethylation (H3K4me3) in children and mothers living in an urban slum in Dhaka, Bangladesh. A pattern of chromatin modification in blood cells of stunted children emerges over time and involves a global decrease in methylation at canonical locations near gene start sites and increased methylation at ectopic sites throughout the genome. This redistribution occurs at metabolic and immune genes and was specific for H3K4me3, as it was not observed for histone H3 lysine 27 acetylation in the same samples. Methylation changes in stunting globally resemble changes that occur in vitro in response to altered methylation capacity, suggesting that reduced levels of one-carbon nutrients in the diet play a key role in stunting in this population. A network of differentially expressed genes in stunted children reveals effects on chromatin modification machinery, including turnover of H3K4me3, as well as posttranscriptional gene regulation affecting immune response pathways and lipid metabolism. Consistent with these changes, reduced expression of the endocytic receptor gene LDL receptor 1 (LRP1) is a driver of stunting in a mouse model, suggesting a target for intervention.


Assuntos
Histonas/genética , Desnutrição/genética , Animais , Epigênese Genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Desnutrição/metabolismo , Metilação , Camundongos
5.
Cell Cycle ; 4(7): 919-26, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15970672

RESUMO

Methylation of histone lysine residues in eukaryotic chromatin has been an exciting area of research ever since the first histone methyltransferase enzyme, Suv39h, was found to methylate lysine 9 of histone H3 in 2000. Only a year later, the HP1 chromodomain polypeptide was identified as a recognition module for this histone modification. Similar to bromodomain-containing proteins that recognize histone acetylation sites and subsequently stabilize large complexes to chromatin, effector proteins can also be recruited and stabilized by histone methylation. Although histone acetylation generally correlates with active transcription, histone methylation is associated with both the activation and silencing of transcription, depending on which lysine residue is modified. The list of proteins that may in fact directly associate with specific methylated histone lysines is expanding. Since the finding of HP1, many additional proteins have been shown to bind methylated histone residues. For instance, Polycomb, Chd1, 53BP1, and Crb2/Rad9 proteins all associate with methylated chromatin in a unique manner governed by their respective recognition motifs. Here we highlight recent data on the recognition specificity and biological significance of proteins that associate with methylated histone lysines.


Assuntos
Histonas/metabolismo , Proteínas de Transporte/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/química , Humanos , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Metilação
6.
Proc Natl Acad Sci U S A ; 102(24): 8478-82, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15932941

RESUMO

Histone acetyltransferases have been shown to participate in many essential cellular processes, particularly those associated with activation of transcription. SAGA (Spt-Ada-Gcn5 acetyltransferase) and SLIK (SAGA-like) are two highly homologous multisubunit histone acetyltransferase complexes that were originally identified in the yeast Saccharomyces cerevisiae. Here, we identify the protein Sgf73/Sca7 as a component of SAGA and SLIK, and a homologue of the human SCA7-encoded protein ataxin-7, which, in its polyglutamine expanded pathological form, is responsible for the neurodegenerative disease spinocerebellar ataxia 7 (SCA7). Our findings indicate that yeast Sca7 is necessary for the integrity and function of both SAGA and SLIK, and that the human ataxin-7 is able to compliment the loss of Sca7 in yeast. A polyglutamine-expanded version of ataxin-7 assembles a SAGA complex that is depleted of critical proteins that regulate the ability of SAGA to acetylate nucleosomes. These observations have significant implications for the function of the human Sca7 protein in disease pathogenesis.


Assuntos
Acetiltransferases/genética , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/genética , Expansão das Repetições de Trinucleotídeos/genética , Leveduras/genética , Sequência de Aminoácidos , Ataxina-7 , Western Blotting , Histona Acetiltransferases , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Alinhamento de Sequência , Leveduras/enzimologia , beta-Galactosidase
7.
Nature ; 433(7024): 434-8, 2005 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-15647753

RESUMO

The specific post-translational modifications to histones influence many nuclear processes including gene regulation, DNA repair and replication. Recent studies have identified effector proteins that recognize patterns of histone modification and transduce their function in downstream processes. For example, histone acetyltransferases (HATs) have been shown to participate in many essential cellular processes, particularly those associated with activation of transcription. Yeast SAGA (Spt-Ada-Gcn5 acetyltransferase) and SLIK (SAGA-like) are two highly homologous and conserved multi-subunit HAT complexes, which preferentially acetylate histones H3 and H2B and deubiquitinate histone H2B. Here we identify the chromatin remodelling protein Chd1 (chromo-ATPase/helicase-DNA binding domain 1) as a component of SAGA and SLIK. Our findings indicate that one of the two chromodomains of Chd1 specifically interacts with the methylated lysine 4 mark on histone H3 that is associated with transcriptional activity. Furthermore, the SLIK complex shows enhanced acetylation of a methylated substrate and this activity is dependent upon a functional methyl-binding chromodomain, both in vitro and in vivo. Our study identifies the first chromodomain that recognizes methylated histone H3 (Lys 4) and possibly identifies a larger subfamily of chromodomain proteins with similar recognition properties.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/química , Sequência de Aminoácidos , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Deleção de Genes , Histona Acetiltransferases , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
8.
J Biol Chem ; 278(21): 19171-5, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12672825

RESUMO

The inhibitor-of-growth (ING) family of proteins was founded by human ING1, a tumor suppressor interacting with p53 in vivo and required for its function in transcription/apoptosis. There are five different ING genes in humans, three of which have been linked to p53 function. In this study, we analyzed the three ING family members present in yeast. We demonstrate that each one is purified as a key component of a specific histone-modifying complex. Pho23 is part of Rpd3/Sin3 histone deacetylase complex, while Yng1 and Yng2 are subunits of the NuA3 and NuA4 histone acetyltransferase complexes, respectively. We also show that the three different ING proteins have opposite roles in transcriptional activation by p53 in vivo. These effects are linked to the presence of each ING in its respective chromatin modifying complex, since mutation of the corresponding catalytic subunit gave similar results. Depletion of Pho23/Rpd3 leads to increased p53-dependent transcription in vivo while depletion of Yng2 abrogates it. Surprisingly, deletion of YNG1 or SAS3 leads to increased transcriptional activation by p53. These data suggest that the NuA3 complex can function in gene-specific repression, an unusual role for a histone acetyltransferase complex. They also demonstrate the key specific role of ING proteins in different chromatin modifying complexes and their opposite functions in p53-dependent transcription.


Assuntos
Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/farmacologia , Acetiltransferases , Northern Blotting , Cromatina/metabolismo , Deleção de Genes , Histona Acetiltransferases , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , RNA Mensageiro/análise , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
9.
Mol Cell Biol ; 22(24): 8774-86, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446794

RESUMO

The SAGA complex is a conserved histone acetyltransferase-coactivator that regulates gene expression in Saccharomyces cerevisiae. SAGA contains a number of subunits known to function in transcription including Spt and Ada proteins, the Gcn5 acetyltransferase, a subset of TATA-binding-protein-associated factors (TAF(II)s), and Tra1. Here we report the identification of SLIK (SAGA-like), a complex related in composition to SAGA. Notably SLIK uniquely contains the protein Rtg2, linking the function of SLIK to the retrograde response pathway. Yeast harboring mutations in both SAGA and SLIK complexes displays synthetic phenotypes more severe than those of yeast with mutation of either complex alone. We present data indicating that distinct forms of the SAGA complex may regulate specific subsets of genes and that SAGA and SLIK have multiple partly overlapping activities, which play a critical role in transcription by RNA polymerase II.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Acetiltransferases/genética , Acetiltransferases/isolamento & purificação , Cromatina/metabolismo , Meios de Cultura/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Histona Acetiltransferases , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Substâncias Macromoleculares , Mutação , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Transcrição/metabolismo
10.
Nature ; 419(6905): 411-5, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12353039

RESUMO

Although the acetylation of histones has a well-documented regulatory role in transcription, its role in other chromosomal functions remains largely unexplored. Here we show that distinct patterns of histone H4 acetylation are essential in two separate pathways of double-strand break repair. A budding yeast strain with mutations in wild-type H4 acetylation sites shows defects in nonhomologous end joining repair and in a newly described pathway of replication-coupled repair. Both pathways require the ESA1 histone acetyl transferase (HAT), which is responsible for acetylating all H4 tail lysines, including ectopic lysines that restore repair capacity to a mutant H4 tail. Arp4, a protein that binds histone H4 tails and is part of the Esa1-containing NuA4 HAT complex, is recruited specifically to DNA double-strand breaks that are generated in vivo. The purified Esa1-Arp4 HAT complex acetylates linear nucleosomal arrays with far greater efficiency than circular arrays in vitro, indicating that it preferentially acetylates nucleosomes near a break site. Together, our data show that histone tail acetylation is required directly for DNA repair and suggest that a related human HAT complex may function similarly.


Assuntos
Acetiltransferases/metabolismo , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , Actinas/genética , Actinas/metabolismo , Genes Fúngicos/genética , Histona Acetiltransferases , Lisina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
J Biol Chem ; 277(10): 7989-95, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11773077

RESUMO

Previous studies have shown that the transcriptional coactivator protein Gcn5 functions as a catalytic histone acetyltransferase (HAT). In this work, we examine the roles of the Ada2 and Ada3 coactivator proteins that are functionally linked to Gcn5. We show that yeast Ada2, Ada3, and Gcn5 form a catalytic core of the ADA and Spt-Ada-Gcn5-acetyltransferase HAT complexes, which is necessary and sufficient in vitro for nucleosomal HAT activity and lysine specificity of the intact HAT complexes. We also demonstrate that Ada3 is necessary for Gcn5-dependent nucleosomal HAT activity in yeast extracts. Our results suggest that Ada2 potentiates the Gcn5 catalytic activity and that Ada3 facilitates nucleosomal acetylation and an expanded lysine specificity.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Catálise , Cromatina/metabolismo , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Histona Acetiltransferases , Lisina/metabolismo , Nucleossomos/metabolismo , Peptídeos/química , Ligação Proteica , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...