Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 53(11): 2619-2628, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23480490

RESUMO

BACKGROUND: Clinical outcomes in transfused patients may be affected by the duration of blood storage, possibly due to red blood cell (RBC)-mediated disruption of nitric oxide (NO) signaling, a key regulator of vascular tone and blood flow. STUDY DESIGN AND METHODS: AS-1 RBC units stored up to 42 days were sampled at selected storage times. Samples were added to aortic rings ex vivo, a system where NO-mediated vasodilation could be experimentally controlled. RESULTS: RBC units showed storage-dependent changes in plasma hemoglobin (Hb), RBC 2,3-diphosphoglycerate acid, and RBC adenosine triphosphate conforming to expected profiles. When freshly collected (Day 0) blood was added to rat aortic rings, methacholine (MCh) stimulated substantial NO-mediated vasodilation. In contrast, MCh produced no vasodilation in the presence of blood stored for 42 days. Surprisingly, the vasoinhibitory effects of stored RBCs were almost totally mediated by RBCs themselves: removal of the supernatant did not attenuate the inhibitory effects, while addition of supernatant alone to the aortic rings only minimally inhibited MCh-stimulated relaxation. Stored RBCs did not inhibit vasodilation by a direct NO donor, demonstrating that the RBC-mediated vasoinhibitory mechanism did not work by NO scavenging. CONCLUSIONS: These studies have revealed a previously unrecognized vasoinhibitory activity of stored RBCs, which is more potent than the described effects of free Hb and works through a different mechanism that does not involve NO scavenging but may function by reducing endothelial NO production. Through this novel mechanism, transfusion of small volumes of stored blood may be able to disrupt physiologic vasodilatory responses and thereby possibly cause adverse clinical outcomes.


Assuntos
Preservação de Sangue , Eritrócitos/fisiologia , Óxido Nítrico/fisiologia , Vasodilatação , Trifosfato de Adenosina/sangue , Animais , Hemoglobinas/análise , Humanos , Cloreto de Metacolina/farmacologia , Ratos , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
2.
Circulation ; 127(10): 1116-27, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23393010

RESUMO

BACKGROUND: Cystathionine γ-lyase (CSE) produces H2S via enzymatic conversion of L-cysteine and plays a critical role in cardiovascular homeostasis. We investigated the effects of genetic modulation of CSE and exogenous H2S therapy in the setting of pressure overload-induced heart failure. METHODS AND RESULTS: Transverse aortic constriction was performed in wild-type, CSE knockout, and cardiac-specific CSE transgenic mice. In addition, C57BL/6J or CSE knockout mice received a novel H2S donor (SG-1002). Mice were followed up for 12 weeks with echocardiography. We observed a >60% reduction in myocardial and circulating H2S levels after transverse aortic constriction. CSE knockout mice exhibited significantly greater cardiac dilatation and dysfunction than wild-type mice after transverse aortic constriction, and cardiac-specific CSE transgenic mice maintained cardiac structure and function after transverse aortic constriction. H2S therapy with SG-1002 resulted in cardioprotection during transverse aortic constriction via upregulation of the vascular endothelial growth factor-Akt-endothelial nitric oxide synthase-nitric oxide-cGMP pathway with preserved mitochondrial function, attenuated oxidative stress, and increased myocardial vascular density. CONCLUSIONS: Our results demonstrate that H2S levels are decreased in mice in the setting of heart failure. Moreover, CSE plays a critical role in the preservation of cardiac function in heart failure, and oral H2S therapy prevents the transition from compensated to decompensated heart failure in part via upregulation of endothelial nitric oxide synthase and increased nitric oxide bioavailability.


Assuntos
Cardiotônicos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/enzimologia , Sulfeto de Hidrogênio/uso terapêutico , Óxido Nítrico Sintase Tipo III/biossíntese , Regulação para Cima/efeitos dos fármacos , Animais , Cardiotônicos/administração & dosagem , Cistationina gama-Liase/deficiência , Cistationina gama-Liase/genética , Insuficiência Cardíaca/fisiopatologia , Sulfeto de Hidrogênio/administração & dosagem , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/fisiologia , Regulação para Cima/fisiologia
3.
Arterioscler Thromb Vasc Biol ; 32(8): 1865-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22652602

RESUMO

OBJECTIVE: ß(2)-adrenoreceptor activation has been shown to protect cardiac myocytes from cell death. We hypothesized that acute ß(2)-adrenoreceptor stimulation, using arformoterol (ARF), would attenuate myocardial ischemia/reperfusion (R) injury via NO synthase activation and cause a subsequent increase in NO bioavailability. METHODS AND RESULTS: Male C57BL/6J and endothelial NO synthase (eNOS) knockout mice were subjected to 45 minutes of myocardial ischemia and 24 hours of R. ARF or vehicle was administered 5 minutes before R. Serum troponin-I was measured, and infarct size per area-at-risk was evaluated at 24 hours of R. Echocardiography was performed at baseline and 2 weeks after R. Myocardial cAMP, protein kinase A, eNOS/Akt phosphorylation status, and NO metabolite levels were assayed. ARF (1 µg/kg) reduced infarct size per area-at-risk by 53.1% (P<0.001 versus vehicle) and significantly reduced troponin-I levels (P<0.001 versus vehicle). Ejection fraction was significantly preserved in ARF-treated hearts compared with vehicle hearts at 2 weeks of R. Serum cAMP and nuclear protein kinase A C-α increased 5 and 15 minutes after ARF injection, respectively (P<0.01). ARF increased Akt phosphorylation at Thr(308) (P<0.001) and Ser(473) (P<0.01), and eNOS phosphorylation at Ser(1177) (P<0.01). ARF treatment increased heart nitrosothiol levels (P<0.001) at 15 min after injection. ARF failed to reduce infarct size in eNOS(-/-) mice. CONCLUSIONS: Our results indicate that ß(2)-adrenoreceptor stimulation activates cAMP, protein kinase A, Akt, and eNOS and augments NO bioavailability. Activation of this prosurvival signaling pathway attenuates myocardial cell death and preserves cardiac function after ischemia/reperfusion.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Etanolaminas/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/patologia , Animais , Morte Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Fumarato de Formoterol , Precondicionamento Isquêmico Miocárdico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Diabetes Technol Ther ; 14(7): 552-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22468627

RESUMO

BACKGROUND: Diabetic foot ulcers, although associated with macrovascular disease and neuropathy, have a microvascular disease causing ischemia not amenable to surgical intervention. Nitrite selectively releases nitric oxide in ischemic tissues, and diabetes subjects have low nitrite levels that do not increase with exercise. This study explores the safety and pharmacokinetics of a single dose of sodium nitrite in subjects with diabetic foot ulcers. SUBJECTS AND METHODS: Using a blinded, randomized crossover study design, 12 subjects with diabetes mellitus and active or healed foot ulcers received a single dose of sodium nitrite on two occasions 7-28 days apart, once with an immediate release (IR) formulation and once with an enteric-coated (EC) formulation for delayed release. Serum nitrite, nitrate, methemoglobin, sulfhemoglobin, blood pressure, pulse rate, complete blood count, chemistry panel, electrocardiogram, and adverse events were followed for up to 6 h after each dose. The IR and EC nitrite levels were analyzed by one-way analysis of variance and by pharmacokinetic modeling. RESULTS: The IR formulation elevated nitrite levels between 0.25 and 0.75 h (P<0.05). The EC formulation did not elevate nitrite levels significantly, but both formulations gave plasma nitrite levels previously suggested to be therapeutic (approximately 2-5 µM). The IR formulation gave an asymptomatic blood pressure drop of 10/6 mm Hg (P<0.003), and two subjects experienced mild flushing. There was no elevation of methemoglobin or other safety concerns. Pharmacokinetic modeling of plama nitrite levels gave r(2) values of 0.81 and 0.97 for the fits for IR and EC formulations, respectively. CONCLUSIONS: Oral sodium nitrite administration is well tolerated in diabetes patients.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Preparações de Ação Retardada/farmacocinética , Pé Diabético/tratamento farmacológico , Nitrito de Sódio/farmacocinética , Administração Oral , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Absorção Intestinal , Masculino , Pessoa de Meia-Idade , Nitrito de Sódio/administração & dosagem , Resultado do Tratamento
5.
Am J Physiol Heart Circ Physiol ; 302(11): H2410-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22467307

RESUMO

Diallyl trisulfide (DATS), a polysulfide constituent found in garlic oil, is capable of the release of hydrogen sulfide (H(2)S). H(2)S is a known cardioprotective agent that protects the heart via antioxidant, antiapoptotic, anti-inflammatory, and mitochondrial actions. Here, we investigated DATS as a stable donor of H(2)S during myocardial ischemia-reperfusion (MI/R) injury in vivo. We investigated endogenous H(2)S levels, infarct size, postischemic left ventricular function, mitochondrial respiration and coupling, endothelial nitric oxide (NO) synthase (eNOS) activation, and nuclear E2-related factor (Nrf2) translocation after DATS treatment. Mice were anesthetized and subjected to a surgical model of MI/R injury with and without DATS treatment (200 µg/kg). Both circulating and myocardial H(2)S levels were determined using chemiluminescent gas chromatography. Infarct size was measured after 45 min of ischemia and 24 h of reperfusion. Troponin I release was measured at 2, 4, and 24 h after reperfusion. Cardiac function was measured at baseline and 72 h after reperfusion by echocardiography. Cardiac mitochondria were isolated after MI/R, and mitochondrial respiration was investigated. NO metabolites, eNOS phosphorylation, and Nrf2 translocation were determined 30 min and 2 h after DATS administration. Myocardial H(2)S levels markedly decreased after I/R injury but were rescued by DATS treatment (P < 0.05). DATS administration significantly reduced infarct size per area at risk and per left ventricular area compared with control (P < 0.001) as well as circulating troponin I levels at 4 and 24 h (P < 0.05). Myocardial contractile function was significantly better in DATS-treated hearts compared with vehicle treatment (P < 0.05) 72 h after reperfusion. DATS reduced mitochondrial respiration in a concentration-dependent manner and significantly improved mitochondrial coupling after reperfusion (P < 0.01). DATS activated eNOS (P < 0.05) and increased NO metabolites (P < 0.05). DATS did not appear to significantly induce the Nrf2 pathway. Taken together, these data suggest that DATS is a donor of H(2)S that can be used as a cardioprotective agent to treat MI/R injury.


Assuntos
Compostos Alílicos/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico/metabolismo , Sulfetos/uso terapêutico , Compostos Alílicos/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Modelos Animais , Miocárdio/metabolismo , Sulfetos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Esquerda/fisiologia
6.
Front Physiol ; 2: 104, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194727

RESUMO

Hydrogen sulfide (H(2)S) and nitric oxide (NO) are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H(2)S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H(2)S on NO generation using EPR spin trapping techniques. H(2)S stimulated a twofold increase in NO production from endothelial nitric oxide synthase (eNOS), which was maximal 30 min after exposure to 25-150 µM H(2)S. Following 30 min H(2)S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H(2)S on NO production. Taken together, these data demonstrate that H(2)S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H(2)S in the regulation of NO production in endothelial cells, and suggest that deficiencies in H(2)S signaling can directly impact processes regulated by NO.

7.
J Am Coll Cardiol ; 58(25): 2683-91, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22152956

RESUMO

OBJECTIVES: This paper examined whether nebivolol protects the heart via nitric oxide (NO) synthase and NO-dependent signaling in an in vivo model of acute myocardial infarction. BACKGROUND: Beta(3)-adrenergic receptor (AR) activation promotes endothelial nitric oxide synthase (eNOS) activity and NO bioavailability. We hypothesized that specific beta(3)-AR agonists would attenuate myocardial ischemia-reperfusion (MI/R) injury via eNOS activation and increased NO bioavailability. METHODS: Mice were subjected to 45 min of myocardial ischemia in vivo followed by 24 h of reperfusion (R). Nebivolol (500 ng/kg), CL 316243 (1 µg/kg), BRL-37344 (1 µg/kg), or vehicle (VEH) was administered at the time of R. Myocardial area-at-risk (AAR) and infarct size (INF)/AAR was measured at 24 h of R. Cardiac tissue and plasma were collected to evaluate eNOS phosphorylation, neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase expression, and nitrite and nitrosothiol levels. RESULTS: Nebivolol (500 ng/kg) reduced INF/AAR by 37% (p < 0.001 vs. VEH) and serum troponin-I levels from 41 ± 4 ng/ml to 25 ± 4 ng/ml (p < 0.05 vs. VEH). CL 316243 and BRL-37344 reduced INF by 39% and 42%, respectively (p < 0.001 vs. VEH). Nebivolol and CL 316243 increased eNOS phosphorylation at Ser-1177 (p < 0.05 vs. VEH) and increased nitrite and total nitrosylated protein levels. Nebivolol and CL 316243 significantly increased myocardial nNOS expression. Nebivolol failed to reduce INF after MI/R in beta(3)-AR (-/-), eNOS(-/-), and in nNOS(-/-) mice. CONCLUSIONS: Our results indicate that beta(3)-AR agonists protect against MI/R injury. Furthermore, the cardioprotective effects of beta(3)-AR agonists are mediated by rapid eNOS and nNOS activation and increased NO bioavailability.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Benzopiranos/farmacologia , Etanolaminas/farmacologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Animais , Disponibilidade Biológica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nebivolol
9.
Expert Rev Clin Pharmacol ; 4(1): 83-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21373204

RESUMO

Coronary artery disease is a major cause of morbidity and mortality in the Western world. Acute myocardial infarction, resulting from coronary artery atherosclerosis, is a serious and often fatal consequence of coronary artery disease, resulting in cell death in the myocardium. Pre- and post-conditioning of the myocardium are two treatment strategies that reduce the amount of cell death significantly. Hydrogen sulfide has recently been identified as a potent cardioprotective signaling molecule, which is a highly effective pre- and post-conditioning agent. The cardioprotective signaling pathways involved in hydrogen sulfide-based pre- and post-conditioning will be explored in this article.


Assuntos
Cardiotônicos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Pós-Condicionamento Isquêmico , Precondicionamento Isquêmico Miocárdico , Miocárdio/metabolismo , Animais , Cardiotônicos/uso terapêutico , Vasos Coronários/metabolismo , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Pós-Condicionamento Isquêmico/métodos , Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais/fisiologia
10.
J Cardiovasc Transl Res ; 3(5): 487-98, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20628909

RESUMO

The physiological role of the gaseous signaling molecule hydrogen sulfide (H(2)S) was first realized in the mid-1990s with the work of Abe and Kimura. Since then, it has become evident that this endogenous gas is extremely important in the homeostasis of the cardiovascular system and the pathogenesis of cardiovascular disease. Several biotechnology companies have developed and are developing H(2)S-based therapeutic compounds, and there are ongoing clinical trials investigating the therapeutic potential of H(2)S. Several organic and chemical compounds that are known H(2)S donors have the potential to be developed into effective H(2)S-based therapeutic agents. This review will provide a historical and current perspective on the role(s) of H(2)S in the cardiovascular system and the current state of development and future outlook of H(2)S-based therapies for cardiovascular disease.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Desenho de Fármacos , Sulfeto de Hidrogênio/uso terapêutico , Animais , Doenças Cardiovasculares/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pesquisa Translacional Biomédica
11.
Arterioscler Thromb Vasc Biol ; 30(10): 1940-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20651283

RESUMO

OBJECTIVE: Humanin (HN), an endogenous antiapoptotic peptide, has previously been shown to protect against Alzheimer's disease and a variety of cellular insults. We evaluated the effects of a potent analog of HN (HNG) in an in vivo murine model of myocardial ischemia and reperfusion. METHODS AND RESULTS: Male C57BL6/J mice (8 to 10 week old) were subjected to 45 minutes of left coronary artery occlusion followed by a 24-hour reperfusion. HNG or vehicle was administered IP 1 hour prior or at the time of reperfusion. The extent of myocardial infarction per area-at-risk was evaluated at 24 hours using Evans Blue dye and 2-3-5-triphenyl tetrazolium chloride staining. Left ventricular function was evaluated at 1 week after ischemia using high-resolution, 2D echocardiography (VisualSonics Vevo 770). Myocardial cell signaling pathways and apoptotic markers were assessed at various time points (0 to 24 hours) following reperfusion. Cardiomyocyte survival and apoptosis in response to HNG were assessed in vitro. HNG reduced infarct size relative to the area-at-risk in a dose-dependent fashion, with a maximal reduction at the dose of 2 mg/kg. HNG therapy enhanced left ventricular ejection fraction and preserved postischemic left ventricular dimensions (end-diastolic and end-systolic), resulting in improved cardiac function. Treatment with HNG significantly increased phosphorylation of AMPK and phosphorylation of endothelial nitric oxide synthase in the heart and attenuated Bcl-2-associated X protein and B-cell lymphoma-2 levels following myocardial ischemia and reperfusion. HNG improved cardiomyocyte survival and decreased apoptosis in response to daunorubicin in vitro. CONCLUSIONS: These data show that HNG provides cardioprotection in a mouse model of myocardial ischemia and reperfusion potentially through activation of AMPK-endothelial nitric oxide synthase-mediated signaling and regulation of apoptotic factors. HNG may represent a novel agent for the treatment of acute myocardial infarction.


Assuntos
Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Peptídeos/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
12.
Age (Dordr) ; 32(4): 467-81, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20502969

RESUMO

Hydrogen sulfide gas (H(2)S) is a putative signaling molecule that causes diverse effects in mammalian tissues including relaxation of blood vessels and regulation of perfusion in the liver, but the effects of aging on H(2)S signaling are unknown. Aging has negative impacts on the cardiovascular system. However, the liver is more resilient with age. Caloric restriction (CR) attenuates affects of age in many tissues. We hypothesized that the H(2)S signaling system is negatively affected by age in the vasculature but not in the liver, which is typically more resilient to age, and that a CR diet minimizes the age affect in the vasculature. To investigate this, we determined protein and mRNA expression of the H(2)S-producing enzymes cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS), H(2)S production rates in the aorta and liver, and the contractile response of aortic rings to exogenous H(2)S. Tissue was collected from Fisher 344 × Brown Norway rats from 8-38 months of age, which had been maintained on an ad libitum (AL) or CR diet. The results demonstrate that age and diet have differential effects on the H(2)S signaling system in aorta and liver. The aorta showed a sizeable effect of both age and diet, whereas the liver only showed a sizeable effect of diet. Aortic rings showed increased contractile sensitivity to H(2)S and increased protein expression of CSE and CBS with age, consistent with a decrease in H(2)S concentration with age. CR appears to benefit CSE and CBS protein in both aorta and liver, potentially by reducing oxidative stress and ameliorating the negative effect of age on H(2)S concentration. Therefore, CR may help maintain the H(2)S signaling system during aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Aorta/efeitos dos fármacos , Restrição Calórica , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Fígado/efeitos dos fármacos , Transdução de Sinais , Animais , Aorta/enzimologia , Cistationina beta-Sintase/genética , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/sangue , Técnicas In Vitro , Fígado/enzimologia , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344
13.
Physiol Biochem Zool ; 83(2): 356-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19327040

RESUMO

Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.


Assuntos
Dano ao DNA/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Poliquetos/fisiologia , RNA/efeitos dos fármacos , Animais , DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Mutação Puntual/efeitos dos fármacos , Poliquetos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...