Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(8): 8726-8740, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194732

RESUMO

This study aimed to evaluate the efficacy of the ethanolic extract of Anadenanthera colubrina in modulating the immune response in the Experimental Autoimmune Encephalomyelitis (EAE) model. The ethanolic extract of the dried bark was analyzed by ESI (+) Orbitrap-MS to obtain a metabolite profile, demonstrating a wide variety of polyphenols, such as flavonoids and phenolic acids. Various parameters were evaluated, such as clinical signs, cytokines, cellular profile, and histopathology in the central nervous system (CNS). The ethanolic extract of A. colubrina demonstrated significant positive effects attenuating the clinical signs and pathological processes associated with EAE. The beneficial effects of the extract treatment were evidenced by reduced levels of pro-inflammatory cytokines, such as IL1ß, IL-6, IL-12, TNF, IFN-γ, and a notable decrease in several cell profiles, including CD8+, CD4+, CD4+IFN-γ, CD4+IL-17+, CD11c+MHC-II+, CD11+CD80+, and CD11+CD86+ in the CNS. In addition, histological analysis revealed fewer inflammatory infiltrates and demyelination sites in the spinal cord of mice treated with the extract compared to the control model group. These results showed, for the first time, that the ethanolic extract of A. colubrina exerts a modulatory effect on inflammatory processes, improving clinical signs in EAE, in the acute phase of the disease, which could be further explored as a possible therapeutic alternative.

2.
Metabolites ; 13(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36984807

RESUMO

Employing a combination of liquid chromatography electrospray ionization and paper spray ionization high-resolution tandem mass spectrometry, extracts from cupuassu (Theobroma grandiflorum) pulp prepared with either water, methanol, acetonitrile or combinations thereof were subjected to metabolite fingerprinting. Among the tested extractors, 100% methanol extracted preferentially phenols and cinnamic acids derivatives, whereas acetonitrile and acetonitrile/methanol were more effective in extracting terpenoids and flavonoids, respectively. And while liquid chromatography- mass spectrometry detected twice as many metabolites as paper spray ionization tandem mass spectrometry, the latter proved its potential as a screening technique. Comprehensive structural annotation showed a high production of terpenes, mainly oleanane triterpene derivatives. of the mass spectra Further, five major metabolites with known antioxidant activity, namely catechin, citric acid, epigallocatechin-3'-glucuronide, 5,7,8-trihydroxyflavanone, and asiatic acid, were subjected to molecular docking analysis using the antioxidative enzyme peroxiredoxin 5 (PRDX5) as a model receptor. Based on its excellent docking score, a pharmacophore model of 5,7,8-trihydroxyflavanone was generated, which may help the design of new antioxidants.

3.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144751

RESUMO

In this work, a metabolic profile of Mansoa hirsuta was investigated, and in vitro assays and theoretical approaches were carried out to evaluate its antioxidant potential. The phytochemical screening detected saponins, organic acids, phenols, tannins, flavonoids, and alkaloids in extracts of leaves, branches, and roots. Through LC-MS analysis, the triterpenes oleanolic acid (m/z 455 [M-H]-) and ursolic acid (m/z 455 [M-H]-) were identified as the main bioactive components. The extracts of the leaves, branches, and roots revealed moderate antioxidant potential in the DPPH test and all extracts were more active in the ABTS test. The leaf extracts showed better antioxidant capacity, displaying IC50 values of 43.5 ± 0.14, 63.6 ± 0.54, and 56.1 ± 0.05 µg mL-1 for DPPH, ABTS, and kinetics assays, respectively. The leaf extract showed higher total flavonoid content (TFC) (5.12 ± 1.02 mg QR/g), followed by branches (3.16 ± 0.88 QR/g) and roots (2.04 ± 0.52 QR/g/g). The extract of the branches exhibited higher total phenolic content (TPC) (1.07 ± 0.77 GAE/g), followed by leaves (0.58 ± 0.30 GAE/g) and roots (0.19 ± 0.47 GAE/g). Pharmacophore and molecular docking analysis were performed in order to better understand the potential mechanism of the antioxidant activity of its major metabolites.


Assuntos
Alcaloides , Bignoniaceae , Ácido Oleanólico , Saponinas , Triterpenos , Antioxidantes/análise , Antioxidantes/farmacologia , Benzotiazóis , Bignoniaceae/química , Flavonoides/análise , Flavonoides/farmacologia , Radicais Livres , Simulação de Acoplamento Molecular , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Ácidos Sulfônicos , Taninos
4.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897874

RESUMO

This work evaluated the metabolic profiling of Inga species with antitumor potential. In addition, we described the antigenotoxicity of polyphenols isolated from I. laurina and a proteomic approach using HepG2 cells after treatment with these metabolites. The in vitro cytotoxic activity against HepG2, HT-29 and T98G cancer cell lines was investigated. The assessment of genotoxic damage was carried out through the comet assay. The ethanolic extract from I. laurina seeds was subjected to bioassay-guided fractionation and the most active fractions were characterized. One bioactive fraction with high cytotoxicity against HT-29 human colon cancer cells (IC50 = 4.0 µg mL-1) was found, and it was characterized as a mixture of p-hydroxybenzoic acid and 4-vinyl-phenol. The I. edulis fruit peel (IC50 = 18.6 µg mL-1) and I. laurina seed (IC50 = 15.2 µg mL-1) extracts had cytotoxic activity against the cell line T98G, and its chemical composition showed a variety of phenolic acids. The chemical composition of this species indicated a wide variety of aromatic acids, flavonoids, tannins, and carotenoids. The high concentration (ranging from 5% to 30%) of these polyphenols in the bioactive extract may be responsible for the antitumor potential. Regarding the proteomic approach, we detected proteins directly related to the elimination of ROS, DNA repair, expression of tumor proteins, and apoptosis.


Assuntos
Fabaceae , Polifenóis , Flavonoides/química , Flavonoides/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA