Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 7: e7136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249737

RESUMO

Loss of crop protection products when agricultural spray applications drift has economic and ecological consequences. Modification of the spray solution through tank additives and product formulation is an important drift reduction strategy that could mitigate these effects, but has been studied less than most other strategies. Therefore, an experimental field study was conducted to evaluate spray drift resulting from agricultural ground applications of an insecticide formulated as a suspension concentrate (SC) and as a wettable powder (WP), with and without two adjuvants. Droplet sizes were also measured in a wind tunnel to determine if indirect methods could be substituted for field experimentation to quantify spray drift from these technologies. Results suggest that spray drift was reduced by 37% when comparing the SC to the WP formulation. As much as 63% drift reduction was achieved by incorporating certain spray adjuvants, but this depended on the formulation/adjuvant combination. The wind tunnel data for droplet spectra showed strong agreement with field deposition trends, suggesting that droplet statistics could be used to estimate drift reduction of spray solutions. These findings can be used to develop a classification scheme for formulated products and tank additives based on their potential for reducing spray drift.

2.
PeerJ ; 4: e2167, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366655

RESUMO

There are relatively few experimental studies and risk assessments of the effects on non-target insects from ultra-low volume (ULV) insecticides used for management of adult mosquitoes. Therefore, we evaluated factors that may influence the ability of an insect to intercept the insecticide at the time of application by using Hippodamia convergens (Coleoptera: Coccinellidae) in field bioassay experiments in 2011 and 2015. Treatment factors included different distances, two cage heights (ground-level and 1.5 m above ground) to the point of the application, and covered vs. uncovered cage faces (2015 only). Insecticides used included a water-based formulation (Aqua-Reslin®) and an oil-based formulation (Permanone® 30-30) of permethrin. Cage height was highly significant both years, with much less acute (i.e., short-term exposure) mortality at ground-level compared with 1.5 m. In 2011, acute mortality was less at ground-level (mean = 3.2%, median = 0%) compared to 1.5 m (mean = 85.2%, median = 100%). Cage type also was highly significant, with less mortality in covered cages compared to uncovered cages. Mortality by cage height and cage type was as follows: ground level, covered cage (mean = 2.8%, median = 0.1%); ground level, uncovered cage (mean = 41.9%, median = 9.6%); 1.5 m, covered cage (mean = 6.8%, median = 0%); 1.5 m, uncovered cage (mean = 83.7%, median = 100%). Results suggest that acute mortality to non-target insects may vary considerably based on their height and their ability to directly intercept the insecticide as the aerosol passes through the area being sprayed.

3.
Sci Total Environ ; 438: 72-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22967495

RESUMO

One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.


Assuntos
Meio Ambiente , Poluentes Ambientais/análise , Inseticidas/análise , Modelos Teóricos , Controle de Mosquitos/métodos , Aerossóis , Teorema de Bayes , Poluentes Ambientais/administração & dosagem , Inseticidas/administração & dosagem , Análise de Regressão
4.
Int J Environ Res Public Health ; 8(6): 2142-52, 2011 06.
Artigo em Inglês | MEDLINE | ID: mdl-21776222

RESUMO

A popular and effective management option for adult mosquitoes is the use of insecticides applied by ultra-low-volume (ULV) equipment. However, there is a paucity of data on human dermal exposure to insecticides applied by this method. The objective of the current study was to estimate dermal exposures to the insecticide active ingredient permethrin using water- (Aqua-Reslin®) and oil-based (Permanone® 30-30) formulations with passive dosimetry. No significant differences in deposition of permethrin were observed between years, distance from the spray source, front or back of the body, or the placement of the patches on the body. However, exposure to Aqua-Reslin was significantly greater than Permanone 30-30 and average concentrations deposited on the body were 4.2 and 2.1 ng/cm2, respectively. The greater deposition of Aqua-Reslin is most likely due to the higher density of the water-based formulation which causes it to settle out faster than the lighter oil-based formulation of Permanone 30-30. The estimated average absorbed dermal exposure for permethrin from Aqua-Reslin and Permanone 30-30 was 0.00009 and 0.00005 mg/kg body weight, respectively. We also found that ground deposition of ULV insecticides can be used as a surrogate for estimating dermal exposure. The estimated exposures support the findings of previous risk assessments that exposure to ULV applications used for mosquito management are below regulatory levels of concern.


Assuntos
Exposição Ambiental/análise , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Piretrinas/administração & dosagem , Feminino , Humanos , Masculino , Montana , Medição de Risco/métodos , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...