Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
bioRxiv ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-38585906

RESUMO

Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB -dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilization by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction, and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.

2.
Commun Biol ; 6(1): 837, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573457

RESUMO

Antiviral drugs are used globally as treatment and prophylaxis for long-term and acute viral infections. Even though antivirals also have been shown to have off-target effects on bacterial growth, the potential contributions of antivirals to antimicrobial resistance remains unknown. Herein we explored the ability of different classes of antiviral drugs to induce antimicrobial resistance. Our results establish the previously unrecognized capacity of antivirals to broadly alter the phenotypic antimicrobial resistance profiles of both gram-negative and gram-positive bacteria Escherichia coli and Bacillus cereus. Bacteria exposed to antivirals including zidovudine, dolutegravir and raltegravir developed cross-resistance to commonly used antibiotics including trimethoprim, tetracycline, clarithromycin, erythromycin, and amoxicillin. Whole genome sequencing of antiviral-resistant E. coli isolates revealed numerous unique single base pair mutations, as well as multi-base pair insertions and deletions, in genes with known and suspected roles in antimicrobial resistance including those coding for multidrug efflux pumps, carbohydrate transport, and cellular metabolism. The observed phenotypic changes coupled with genotypic results indicate that bacteria exposed to antiviral drugs with antibacterial properties in vitro can develop multiple resistance mutations that confer cross-resistance to antibiotics. Our findings underscore the potential contribution of wide scale usage of antiviral drugs to the development and spread of antimicrobial resistance in humans and the environment.


Assuntos
Antivirais , Escherichia coli , Humanos , Escherichia coli/genética , Antivirais/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bactérias
3.
Environ Microbiol ; 24(5): 2315-2332, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35304940

RESUMO

The number, size and severity of aquatic low-oxygen dead zones are increasing worldwide. Microbial processes in low-oxygen environments have important ecosystem-level consequences, such as denitrification, greenhouse gas production and acidification. To identify key microbial processes occurring in low-oxygen bottom waters of the Chesapeake Bay, we sequenced both 16S rRNA genes and shotgun metagenomic libraries to determine the identity, functional potential and spatiotemporal distribution of microbial populations in the water column. Unsupervised clustering algorithms grouped samples into three clusters using water chemistry or microbial communities, with extensive overlap of cluster composition between methods. Clusters were strongly differentiated by temperature, salinity and oxygen. Sulfur-oxidizing microorganisms were found to be enriched in the low-oxygen bottom water and predictive of hypoxic conditions. Metagenome-assembled genomes demonstrate that some of these sulfur-oxidizing populations are capable of partial denitrification and transcriptionally active in a prior study. These results suggest that microorganisms capable of oxidizing reduced sulfur compounds are a previously unidentified microbial indicator of low oxygen in the Chesapeake Bay and reveal ties between the sulfur, nitrogen and oxygen cycles that could be important to capture when predicting the ecosystem response to remediation efforts or climate change.


Assuntos
Baías , Microbiota , Bactérias Redutoras de Enxofre , Maryland , Microbiota/genética , Oxirredução , Oxigênio , RNA Ribossômico 16S/genética , Enxofre , Virginia , Água
4.
Microbiol Spectr ; 9(2): e0110521, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704792

RESUMO

Porous media filters are used widely to remove bacteria from contaminated water, such as stormwater runoff. Biofilms that colonize filter media during normal function can significantly alter performance, but it is not clear how characteristics of individual populations colonizing porous media combine to affect bacterial retention. We assess how four bacterial strains isolated from stormwater and a laboratory strain, Pseudomonas aeruginosa PAO1, alter Escherichia coli retention in experimental sand columns under conditions of stormwater filtration relative to a clean-bed control. Our results demonstrate that these strains differentially affect E. coli retention, as was previously shown for a model colloid. To determine whether E. coli retention could be influenced by changes in relative abundance of strains within a microbial community, we selected two pairs of biofilm strains with the largest observed differences in E. coli retention and tested how changes in relative abundance of strain pairs in the biofilm affected E. coli retention. The results demonstrate that E. coli retention efficiency is influenced by the retention characteristics of the strains within biofilm microbial community, but individual strain characteristics influence retention in a manner that cannot be determined from changes in their relative abundance alone. This study demonstrates that changes in the relative abundance of specific members of a biofilm community can significantly alter filter performance, but these changes are not a simple function of strain-specific retention and the relative abundance. Our results suggest that the microbial community composition of biofilms should be considered when evaluating factors that influence filter performance. IMPORTANCE The retention efficiency of bacterial contaminants in biofilm-colonized biofilters is highly variable. Despite the increasing number of studies on the impact of biofilms in filters on bacterial retention, how individual bacterial strains within a biofilm community combine to influence bacterial retention is unknown. Here, we studied the retention of an E. coli K-12 strain, as a model bacterium, in columns colonized by four bacterial strains isolated from stormwater and P. aeruginosa, a model biofilm-forming strain. Simplified two-strain biofilm communities composed of combinations of the strains were used to determine how relative abundance of biofilm strains affects filter performance. Our results provide insight into how biofilm microbial composition influences bacterial retention in filters and whether it is possible to predict bacterial retention efficiency in biofilm-colonized filters from the relative abundance of individual members and the retention characteristics of cultured isolates.


Assuntos
Biofilmes/crescimento & desenvolvimento , Recuperação e Remediação Ambiental/métodos , Escherichia coli/isolamento & purificação , Filtração/métodos , Pseudomonas aeruginosa/isolamento & purificação , Tempestades Ciclônicas , Escherichia coli/classificação , Água Subterrânea/microbiologia , Porosidade , Pseudomonas aeruginosa/classificação , Água/análise , Microbiologia da Água , Poluição da Água/análise , Qualidade da Água
5.
Environ Sci Technol ; 55(4): 2585-2596, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33523627

RESUMO

Filter performance can be affected by bacterial colonization of the filtration media, yet little is known about how naturally occurring bacteria modify the surface properties of filtration media to affect colloidal removal. We used sand columns and simulated stormwater conditions to study the retention of model colloidal particles, carboxyl-modified-latex (CML) beads, in porous media colonized by naturally occurring bacterial strains. Colloid retention varied substantially across identical columns colonized by different, in some cases closely related, bacterial strains in a cell density independent manner. Atomic force microscopy was applied to quantify the interaction energy between CML beads and each bacterial strain's biofilm surface. We found interaction energy between CML and each strain was significantly different, with adhesive energies between the biofilm and CML, presumed to be associated with polymer-surface bonding, a better predictor of CML retention than other strain characteristics. Overall, the findings suggest that interactions with biopolymers in naturally occurring bacterial biofilms strongly influence colloid retention in porous media. This work highlights the need for more investigation into the role of biofilm microbial community composition on colloid removal in porous media to improve biofilter design and operation.


Assuntos
Biofilmes , Coloides , Filtração , Porosidade , Propriedades de Superfície
6.
Nat Microbiol ; 6(5): 630-642, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33633401

RESUMO

Viruses impact microbial diversity, gene flow and function through virus-host interactions. Although metagenomics surveys are rapidly cataloguing viral diversity, methods are needed to capture specific virus-host interactions in situ. Here, we leveraged metagenomics and repurposed emulsion paired isolation-concatenation PCR (epicPCR) to investigate viral diversity and virus-host interactions in situ over time in an estuarine environment. The method fuses a phage marker, the ribonucleotide reductase gene, with the host 16S rRNA gene of infected bacterial cells within emulsion droplets providing single-cell resolution for dozens of samples. EpicPCR captured in situ virus-host interactions for viral clades with no closely related database representatives. Abundant freshwater Actinobacteria lineages, in particular Rhodoluna sp., were the most common hosts for these poorly characterized viruses, with interactions correlated with environmental factors. Multiple methods used to identify virus-host interactions, including epicPCR, identified different and largely non-overlapping interactions within the vast virus-host interaction space. Tracking virus-host interaction dynamics also revealed that multi-host viruses had significantly longer periods with observed virus-host interactions, whereas single-host viruses were observed interacting with hosts at lower minimum abundances, suggesting more efficient interactions. Capturing in situ interactions with epicPCR revealed environmental and ecological factors shaping virus-host interactions, highlighting epicPCR as a valuable technique in viral ecology.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Reação em Cadeia da Polimerase/métodos , Fenômenos Fisiológicos Virais , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/genética , Água Doce/microbiologia , Água Doce/virologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno
7.
Environ Sci Technol ; 54(24): 15946-15957, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33258596

RESUMO

The use of nontherapeutic broad-spectrum antimicrobial agents triclosan (TCS) and benzalkonium chloride (BC) can contribute to bacterial resistance to clinically relevant antibiotics. Antimicrobial-resistant bacteria within wastewater may reflect the resistance burden within the human microbiome, as antibiotics and pathogens in wastewater can track with clinically relevant parameters during perturbations to the community. In this study, we monitored culturable and resistant wastewater bacteria and cross-resistance to clinically relevant antibiotics to gauge the impact of each antimicrobial and identify factors influencing cross-resistance profiles. Bacteria resistant to TCS and BC were isolated from wastewater influent over 21 months, and cross-resistance, taxonomy, and monthly changes were characterized under both antimicrobial selection regimes. Cross-resistance profiles from each antimicrobial differed within and between taxa. BC-isolated bacteria had a significantly higher prevalence of resistance to "last-resort antibiotic" colistin, while isolates resistant to TCS exhibited higher rates of multidrug resistance. Prevalence of culturable TCS-resistant bacteria decreased over time following Food and Drug Administration (FDA) TCS bans. Cross-resistance patterns varied according to sampling date, including among the most clinically important antibiotics. Correlations between strain-specific resistance profiles were largely influenced by taxonomy, with some variations associated with sampling date. The results reveal that time, taxonomy, and selection by TCS and BC impact features of cross-resistance patterns among diverse wastewater microorganisms, which could reflect the variety of factors influencing resistance patterns relevant to a community microbiome.


Assuntos
Anti-Infecciosos , Águas Residuárias , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Humanos , Testes de Sensibilidade Microbiana
8.
Biogeosciences ; 17(12): 3135-3147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072161

RESUMO

Bubbles adsorb and transport particulate matter both in industrial and marine systems. While methane-containing bubbles emitted from anoxic sediments are found extensively in aquatic ecosystems, relatively little attention has been paid to the possibility that such bubbles transport particle-associated chemical or biological material from sediments to surface waters of freshwater lakes. We quantified transport of particulate material from sediments to the surface by bubbles in Upper Mystic Lake, MA and in a 15 m tall experimental column. Vertical particle transport was positively correlated with the volume of gas bubbles released from the sediment. Particles transported by bubbles originated almost entirely in the sediment, rather than being scavenged from the water column. Concentrations of arsenic, chromium, lead, and cyanobacterial cells in bubble-transported particulate material were similar to those of bulk sediment, and particles were transported from depths exceeding 15 m, resulting in daily fluxes as large as 0.18 mg of arsenic m-2 and 2 × 104 cyanobacterial cells m-2 in the strongly stratified Upper Mystic Lake. While bubble-facilitated arsenic transport currently appears to be a modest component of total arsenic cycling in this lake, bubble-facilitated cyanobacterial transport could comprise as much as 17% of recruitment in this lake and may thus be of particular importance in large, deep, stratified lakes.

9.
mSystems ; 4(5)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594828

RESUMO

Accurate predictions across multiple fields of microbiome research have far-reaching benefits to society, but there are few widely accepted quantitative tools to make accurate predictions about microbial communities and their functions. More discussion is needed about the current state of microbiome analysis and the tools required to overcome the hurdles preventing development and implementation of predictive analyses. We summarize the ideas generated by participants of the Mid-Atlantic Microbiome Meet-up in January 2019. While it was clear from the presentations that most fields have advanced beyond simple associative and descriptive analyses, most fields lack essential elements needed for the development and application of accurate microbiome predictions. Participants stressed the need for standardization, reproducibility, and accessibility of quantitative tools as key to advancing predictions in microbiome analysis. We highlight hurdles that participants identified and propose directions for future efforts that will advance the use of prediction in microbiome research.

10.
Microbiome ; 6(1): 165, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30227897

RESUMO

BACKGROUND: Microbial processes are intricately linked to the depletion of oxygen in in-land and coastal water bodies, with devastating economic and ecological consequences. Microorganisms deplete oxygen during biomass decomposition, degrading the habitat of many economically important aquatic animals. Microbes then turn to alternative electron acceptors, which alter nutrient cycling and generate potent greenhouse gases. As oxygen depletion is expected to worsen with altered land use and climate change, understanding how chemical and microbial dynamics impact dead zones will aid modeling efforts to guide remediation strategies. More work is needed to understand the complex interplay between microbial genes, populations, and biogeochemistry during oxygen depletion. RESULTS: Here, we used 16S rRNA gene surveys, shotgun metagenomic sequencing, and a previously developed biogeochemical model to identify genes and microbial populations implicated in major biogeochemical transformations in a model lake ecosystem. Shotgun metagenomic sequencing was done for one time point in Aug., 2013, and 16S rRNA gene sequencing was done for a 5-month time series (Mar.-Aug., 2013) to capture the spatiotemporal dynamics of genes and microorganisms mediating the modeled processes. Metagenomic binning analysis resulted in many metagenome-assembled genomes (MAGs) that are implicated in the modeled processes through gene content similarity to cultured organism and the presence of key genes involved in these pathways. The MAGs suggested some populations are capable of methane and sulfide oxidation coupled to nitrate reduction. Using the model, we observe that modulating these processes has a substantial impact on overall lake biogeochemistry. Additionally, 16S rRNA gene sequences from the metagenomic and amplicon libraries were linked to processes through the MAGs. We compared the dynamics of microbial populations in the water column to the model predictions. Many microbial populations involved in primary carbon oxidation had dynamics similar to the model, while those associated with secondary oxidation processes deviated substantially. CONCLUSIONS: This work demonstrates that the unique capabilities of resident microbial populations will substantially impact the concentration and speciation of chemicals in the water column, unless other microbial processes adjust to compensate for these differences. It further highlights the importance of the biological aspects of biogeochemical processes, such as fluctuations in microbial population dynamics. Integrating gene and population dynamics into biogeochemical models has the potential to improve predictions of the community response under altered scenarios to guide remediation efforts.


Assuntos
Lagos/química , Lagos/microbiologia , Microbiota , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/química , Carbono/metabolismo , Ecossistema , Metagenoma , Metagenômica , Metano/química , Metano/metabolismo , Oxirredução , Oxigênio/química , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA