Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(4): 683-698.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38151019

RESUMO

Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Trifosfato de Adenosina , Inibidores Enzimáticos/farmacologia , Succinatos
2.
J Am Soc Mass Spectrom ; 33(7): 1293-1302, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758524

RESUMO

Identification and sequence determination by mass spectrometry have become routine analyses for soluble proteins. Membrane proteins, however, remain challenging targets due to their hydrophobicity and poor annotation. In particular small membrane proteins often remain unnoticed as they are largely inaccessible to Bottom-Up proteomics. Recent advances in structural biology, though, have led to multiple membrane protein complex structures being determined at sufficiently high resolution to detect uncharacterized, small subunits. In this work we offer a guide for the mass spectrometric characterization of solvent extraction-based purifications of small membrane proteins isolated from protein complexes and cellular membranes. We first demonstrate our Top-Down MALDI-MS/MS approach on a Photosystem II preparation, analyzing target protein masses between 2.5 and 9 kDa with high accuracy and sensitivity. Then we apply our technique to purify and sequence the mycobacterial ATP synthase c subunit, the molecular target of the antibiotic drug bedaquiline. We show that our approach can be used to directly track and pinpoint single amino acid mutations that lead to antibiotic resistance in only 4 h. While not applicable as a high-throughput pipeline, our MALDI-MS/MS and ISD-based approach can identify and provide valuable sequence information on small membrane proteins, which are inaccessible to conventional Bottom-Up techniques. We show that our approach can be used to unambiguously identify single-point mutations leading to antibiotic resistance in mycobacteria.


Assuntos
Proteínas de Membrana , Espectrometria de Massas em Tandem , Proteômica/métodos , Análise de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
3.
Commun Biol ; 5(1): 166, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210534

RESUMO

Increasing antimicrobial resistance compels the search for next-generation inhibitors with differing or multiple molecular targets. In this regard, energy conservation in Mycobacterium tuberculosis has been clinically validated as a promising new drug target for combatting drug-resistant strains of M. tuberculosis. Here, we show that HM2-16F, a 6-substituted derivative of the FDA-approved drug amiloride, is an anti-tubercular inhibitor with bactericidal properties comparable to the FDA-approved drug bedaquiline (BDQ; Sirturo®) and inhibits the growth of bedaquiline-resistant mutants. We show that HM2-16F weakly inhibits the F1Fo-ATP synthase, depletes ATP, and affects the entry of acetyl-CoA into the Krebs cycle. HM2-16F synergizes with the cytochrome bcc-aa3 oxidase inhibitor Q203 (Telacebec) and co-administration with Q203 sterilizes in vitro cultures in 14 days. Synergy with Q203 occurs via direct inhibition of the cytochrome bd oxidase by HM2-16F. This study shows that amiloride derivatives represent a promising discovery platform for targeting energy generation in drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Trifosfato de Adenosina , Amilorida/farmacologia , Antituberculosos/farmacologia , Citocromos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxirredutases
4.
ChemMedChem ; 12(2): 106-119, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27792278

RESUMO

Bedaquiline (BDQ) is a novel and highly potent last-line antituberculosis drug that was approved by the US FDA in 2013. Owing to its stereo-structural complexity, chemical synthesis and compound optimization are rather difficult and expensive. This study describes the structural simplification of bedaquiline while preserving antitubercular activity. The compound's structure was split into fragments and reassembled in various combinations while replacing the two chiral carbon atoms with an achiral linkage instead. Four series of analogues were designed; these candidates retained their potent antitubercular activity at sub-microgram per mL concentrations against both sensitive and multidrug-resistant (MDR) Mycobacterium tuberculosis strains. Six out of the top nine MIC-ranked candidates were found to inhibit mycobacterial ATP synthesis activity with IC50 values between 20 and 40 µm, one had IC50 >66 µm, and two showed no inhibition, despite their antitubercular activity. These results provide a basis for the development of chemically less complex, lower-cost bedaquiline derivatives and describe the identification of two derivatives with antitubercular activity against non-ATP synthase related targets.


Assuntos
Antituberculosos/química , Diarilquinolinas/química , Quinolinas/química , Antituberculosos/síntese química , Antituberculosos/farmacologia , Diarilquinolinas/síntese química , Diarilquinolinas/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/farmacologia , Relação Estrutura-Atividade
5.
Macromol Rapid Commun ; 37(17): 1421-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27348088

RESUMO

Amino-acid-based chiral surfactants with polymerizable moieties are synthesized, and a versatile approach to prepare particles thereof with a chiral surface functionality is presented. As an example of an application, the synthesized particles are tested for their ability as nucleating agents in the enantioselective crystallization of amino acid conglomerate systems, taking rac-asparagine as a model system. Particles resulting from chiral surfactants with different tail groups are compared and the results demonstrate that only the chiral nanoparticles made of the polymerizable surfactant are able to act efficiently as nucleation agent in enantioselective crystallization.


Assuntos
Aminoácidos/química , Nanopartículas/química , Polimerização , Tensoativos/síntese química , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Estereoisomerismo , Tensoativos/química
6.
Sci Adv ; 1(4): e1500106, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26601184

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) is more prevalent today than at any other time in human history. Bedaquiline (BDQ), a novel Mycobacterium-specific adenosine triphosphate (ATP) synthase inhibitor, is the first drug in the last 40 years to be approved for the treatment of MDR-TB. This bactericidal compound targets the membrane-embedded rotor (c-ring) of the mycobacterial ATP synthase, a key metabolic enzyme required for ATP generation. We report the x-ray crystal structures of a mycobacterial c9 ring without and with BDQ bound at 1.55- and 1.7-Å resolution, respectively. The structures and supporting functional assays reveal how BDQ specifically interacts with the rotor ring via numerous interactions and thereby completely covers the c-ring's ion-binding sites. This prevents the rotor ring from acting as an ion shuttle and stalls ATP synthase operation. The structures explain how diarylquinoline chemicals specifically inhibit the mycobacterial ATP synthase and thus enable structure-based drug design of next-generation ATP synthase inhibitors against Mycobacterium tuberculosis and other bacterial pathogens.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26090360

RESUMO

Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.

8.
Chirality ; 27(9): 613-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26094606

RESUMO

Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.


Assuntos
Calorimetria , Nanopartículas/química , Polímeros/química , Temperatura Alta , Tamanho da Partícula , Estereoisomerismo
9.
Adv Mater ; 27(17): 2728-32, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25809528

RESUMO

Chiral polymer nanoparticles based on amino acids are prepared by miniemulsion polymerization and are demonstrated to serve as nucleating agents for the enantioselective crystallization of racemic mixtures of amino acids. The synthesized chiral nanoparticles are suited for the development of enantioselective processes and also contribute to a better understanding of chiral recognition on polymer surfaces.


Assuntos
Aminoácidos/química , Nanopartículas/química , Dicroísmo Circular , Cristalização , Nanopartículas/ultraestrutura , Polímeros/química , Estereoisomerismo
10.
Mol Microbiol ; 92(5): 973-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24707994

RESUMO

In the c-ring rotor of ATP synthases ions are shuttled across the membrane during ATP synthesis by a unique rotary mechanism. We investigated characteristics of the c-ring from the alkaliphile Bacillus pseudofirmus OF4 with respect to evolutionary adaptations to operate with protons at high environmental pH. The X-ray structures of the wild-type c13 ring at pH 9.0 and a 'neutralophile-like' mutant (P51A) at pH 4.4, at 2.4 and 2.8 Šresolution, respectively, reveal a dependency of the conformation and protonation state of the proton-binding glutamate (E(54) ) on environmental hydrophobicity. Faster labelling kinetics with the inhibitor dicyclohexylcarbodiimide (DCCD) demonstrate a greater flexibility of E(54) in the mutant due to reduced water occupancy within the H(+) binding site. A second 'neutralophile-like' mutant (V21N) shows reduced growth at high pH, which is explained by restricted conformational freedom of the mutant's E(54) carboxylate. The study directly connects subtle structural adaptations of the c-ring ion binding site to in vivo effects of alkaliphile cell physiology.


Assuntos
Bacillus/enzimologia , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/metabolismo , ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Dicicloexilcarbodi-Imida/farmacologia , Concentração de Íons de Hidrogênio
11.
Beilstein J Nanotechnol ; 5: 2129-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551041

RESUMO

Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i) biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii) biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core-shell structures; and (iii) so-called "soft templates", which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers.

12.
Proc Natl Acad Sci U S A ; 110(19): 7874-9, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23613590

RESUMO

The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles.


Assuntos
Bacillus/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Alanina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus/enzimologia , Membrana Celular/metabolismo , Cristalografia por Raios X , Glicina/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
J Bacteriol ; 193(16): 4290-1, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685297

RESUMO

The genes and molecular machines that allow for a thermoalkaliphilic lifestyle have not been defined. To address this goal, we report on the improved high-quality draft genome sequence of Caldalkalibacillus thermarum strain TA2.A1, an obligately aerobic bacterium that grows optimally at pH 9.5 and 65 to 70°C on a wide variety of carbon and energy sources.


Assuntos
Bacillaceae/genética , Genoma Bacteriano , Dados de Sequência Molecular
14.
Biochemistry ; 50(24): 5497-506, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21568349

RESUMO

The ATP synthase of the alkaliphile Bacillus pseudofirmus OF4 has a tridecameric c-subunit rotor ring. Each c-subunit has an AxAxAxA motif near the center of the inner helix, where neutralophilic bacteria generally have a GxGxGxG motif. Here, we studied the impact of four single and six multiple Ala-to-Gly chromosomal mutations in the A16xAxAxA22 motif on the capacity for nonfermentative growth and, for most of the mutants, on ATP synthesis by ADP- and P(i)-loaded membrane vesicles at pH 7.5 and 10.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of the holo-ATP synthases were used to probe stability of the mutant c-rotors and mobility properties of the c-rotors as well as the monomeric c-subunits that are released from them by trichloroacetic acid treatment. Mutants containing an Ala16-to-Gly mutation exhibited the most severe functional defects. Via SDS-PAGE, most of the mutant c-monomers exhibited increased mobility relative to the wild-type (WT) c-subunit, but among the intact c-rings, only Ala16-to-Gly mutants exhibited significantly increased mobility relative to that of the WT c-ring. The hypothesis that these c-rings have a decreased c-subunit stoichiometry is still untested, but the functional impact of an Ala16-to-Gly mutation clearly depended upon additional Ala-to-Gly mutation(s) and their positions. The A16/20G double mutant exhibited a larger functional deficit than both the A16G and A16/18G mutants. Most of the mutant c-rings showed in vitro instability relative to that of the WT c-ring. However, the functional deficits of mutants did not correlate well with the extent of c-ring stability loss, so this property is unlikely to be a major factor in vivo.


Assuntos
Bacillus/enzimologia , Bacillus/genética , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , ATPases Bacterianas Próton-Translocadoras/metabolismo , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Glucosídeos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Phys Chem Chem Phys ; 12(41): 13375-82, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20820587

RESUMO

Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F(1)F(o)-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F(1)F(o)-ATP synthases. Under selected buffer conditions the mass of the intact F(1)F(o)-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases.


Assuntos
ATPases Translocadoras de Prótons/química , Animais , Bacillus/enzimologia , Bovinos , Humanos , Espectrometria de Massas , Mitocôndrias/enzimologia , Subunidades Proteicas/química
16.
PLoS Biol ; 8(8): e1000443, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20689804

RESUMO

We solved the crystal structure of a novel type of c-ring isolated from Bacillus pseudofirmus OF4 at 2.5 A, revealing a cylinder with a tridecameric stoichiometry, a central pore, and an overall shape that is distinct from those reported thus far. Within the groove of two neighboring c-subunits, the conserved glutamate of the outer helix shares the proton with a bound water molecule which itself is coordinated by three other amino acids of outer helices. Although none of the inner helices contributes to ion binding and the glutamate has no other hydrogen bonding partner than the water oxygen, the site remains in a stable, ion-locked conformation that represents the functional state present at the c-ring/membrane interface during rotation. This structure reveals a new, third type of ion coordination in ATP synthases. It appears in the ion binding site of an alkaliphile in which it represents a finely tuned adaptation of the proton affinity during the reaction cycle.


Assuntos
Bacillus/enzimologia , ATPases Bacterianas Próton-Translocadoras/química , Prótons , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacillus/classificação , ATPases Bacterianas Próton-Translocadoras/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas
17.
J Mol Biol ; 388(3): 611-8, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19327366

RESUMO

We have structurally characterized the c-ring from the thermoalkaliphilic Bacillus sp. strain TA2.A1 F(1)F(o)-ATP synthase. Atomic force microscopy imaging and cryo-electron microscopy analyses confirm previous mass spectrometric data indicating that this c-ring contains 13 c-subunits. The cryo-electron microscopy map obtained from two-dimensional crystals shows less closely packed helices in the inner ring compared to those of Na(+)-binding c(11) rings. The inner ring of alpha-helices in c(11) rings harbors a conserved GxGxGxGxG motif, with glycines located at the interface between c-subunits, which is responsible for the close packing of these helices. This glycine motif is altered in the c(13) ring of Bacillus sp. strain TA2.A1 to AxGxSxGxS, leading to a change in c-c subunit contacts and thereby enlarging the c-ring diameter to host a greater number of c-subunits. An altered glycine motif is a typical feature of c-subunit sequences in alkaliphilic Bacillus species. We propose that enlarged c-rings in proton-dependent F-ATP synthases may represent an adaptation to facilitate ATP synthesis at low overall proton-motive force, as occurs in bacteria that grow at alkaline pH.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , ATPases Mitocondriais Próton-Translocadoras/química , Sequência de Aminoácidos , Bacillus/química , Microscopia Crioeletrônica , Cristalização , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...