Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(16): 20240-20251, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37067020

RESUMO

SrVO3 (SVO) is a prospective candidate to replace the conventional indium tin oxide (ITO) among the new generation of transparent conducting oxide (TCO) materials. In this study, the structural, electrical, and optical properties of SVO thin films, both epitaxial and polycrystalline, are determined during and after heat treatments in the 150-250 °C range and under ambient environment in order to explore the chemical stability of this material. The use of these relatively low temperatures speeds up the natural aging of the films and allows following the evolution of their related properties. The combination of techniques rather sensitive to the film surface and of techniques sampling the film volume will emphasize the presence of a surface oxidation evolving in time at low annealing temperatures, whereas the perovskite phase is destroyed throughout the film for treatments above 200 °C. The present study is designed to understand the thermal degradation and long-term stability issues of vanadate-based TCOs and to identify technologically viable solutions for the application of this group as new TCOs.

2.
ACS Appl Mater Interfaces ; 13(30): 36407-36415, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309353

RESUMO

We explored the time dependence of the nanoscale domain relaxation mechanism in epitaxial K0.5Na0.5NbO3 (KNN) thin films grown on La0.67Sr0.33MnO3/SrTiO3 (001) substrates over the thickness range 20-80 nm using scanning probe microscopy. Kelvin probe force microscopy (KFM) and piezoresponse force microscopy were performed on pulsed-laser-deposition-deposited KNN thin films for studying the time evolution of trapped charges and polarized domains, respectively. The KFM data show that the magnitude and retention time of the surface potential are the maxima for 80 nm-thick film and reduce with the reduction in the film thickness. The charging and discharging of the samples reveal the easier and stronger electron trapping compared to hole trapping. This result further indicates the asymmetry between retention of the pulse-voltage-induced upward and downward domains. Furthermore, the time evolution of these ferroelectric nanodomains are found to obey stretched exponential behavior. The relaxation time (T) has been found to increase with increase in thickness; however, the corresponding stretched exponent (ß) is reduced. Moreover, the written domain can retain for more than 2300 min in KNN thin films. An in-depth understanding of domain relaxation dynamics in Pb-free KNN thin films can bridge a path for future high-density memory applications.

3.
ACS Appl Mater Interfaces ; 12(31): 35606-35613, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32805796

RESUMO

We have probed the structural and magnetic properties of PrVO3 (PVO) thin films grown on the (001)-, (110)-, and (111)-oriented SrTiO3 (STO) substrates. By changing the substrate orientation, the film out-of-plane orientation can be tuned to [110], [100]/[010], and [011]/[311], with different in-plane crystallographic variants. Accommodation of these variants on the different substrates implies different strain states, which have direct influence on the magnetic properties of PVO films. The magnetic moment of PVO films radically enhances from 0.4 µB/f.u. for STO(001) to 2.3 µB/f.u. for STO(111). While films on the (001)-oriented STO substrate display out-of-plane anisotropy, an in-plane anisotropy is observed for films grown on the (110)- and (111)-oriented STO substrates. In addition, a strong uniaxial magnetic anisotropy is also extracted for a partially relaxed film on the (110)-oriented STO substrate. Such findings can help oxide community for the better understanding of magnetic anisotropy in vanadate thin films, a subject that still suffer from significant lack of scientific investigations.

4.
ACS Appl Mater Interfaces ; 11(40): 37302-37312, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31512470

RESUMO

New paradigms are required in microelectronics when the transistor is in its downscaling limit and integration of materials presenting functional properties not available in classical silicon is one of the promising alternatives. Here, we demonstrate the possibility to grow La0.67Sr0.33MnO3 (LSMO) functional materials on amorphous substrates with properties close to films grown on single-crystalline substrates using a two-dimensional seed layer. X-ray diffraction and electron backscatter diffraction mapping demonstrate that the Ca2Nb3O10- nanosheet (NS) layer induces epitaxial stabilization of LSMO films with a strong out-of-plane (001) texture, whereas the growth of LSMO films on uncoated glass substrates exhibits a nontextured polycrystalline phase. The magnetic properties of LSMO films deposited on NS are similar to those of the LSMO grown on SrTiO3 single-crystal substrates in the same conditions (which is used as a reference in this work). Moreover, transport measurements take advantages of the texture and polycrystalline properties to induce low-field magnetoresistance at low temperature and also a high value of 40% magnetoresistance from 10 to 300 K, making it interesting for sensor applications. Therefore, the NS seed layer offers new perspectives for the integration of functional materials grown at moderate temperatures on any substrate, which will be the key for the development of oxitronics.

5.
Nat Commun ; 10(1): 3052, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296861

RESUMO

The Rashba effect plays important roles in emerging quantum materials physics and potential spintronic applications, entailing both the spin orbit interaction (SOI) and broken inversion symmetry. In this work, we devise asymmetric oxide heterostructures of LaAlO3//SrTiO3/LaAlO3 (LAO//STO/LAO) to study the Rashba effect in STO with an initial centrosymmetric structure, and broken inversion symmetry is created by the inequivalent bottom and top interfaces due to their opposite polar discontinuities. Furthermore, we report the observation of a transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects in the oxide heterostructures, which is controlled by the filling of Ti orbitals. Such asymmetric oxide heterostructures with initially centrosymmetric materials provide a general strategy for tuning the Rashba SOI in artificial quantum materials.

6.
ACS Appl Mater Interfaces ; 10(50): 44190-44196, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30474952

RESUMO

A strong perpendicular magnetocrystalline anisotropy (PMA) in antiferromagnetically coupled SrRuO3(17 uc (unit cell))/PrMnO3( n uc) superlattices effectively reconstructs the interfacial spin ordering. The occurrence of significant anisotropic interfacial antiferromagnetic coupling between the Ru and Mn ions is systematically tuned by varying the PrMnO3 layer thickness in ultrathin scale from 3 to 12 uc, which is associated with a rise in PMA energy from 0.28 × 106 to 1.60 × 106 erg/cm3. The analysis using the Stoner-Wohlfarth model and density functional theory confirm that the exchange anisotropy is the major contribution to the PMA. The superlattices with PrMnO3 layer thickness ≥7 uc exhibit the tunneling-like transport of Ru 4d electrons, which is rather expected in the stronger antiferromagnetically coupled superlattices with thinner PrMnO3 layer. Tunneling-like transport at thicker spacer layer in the SrRuO3-PrMnO3 superlattice system is an unique feature of two ferromagnet-based superlattices. Our investigations show that the technologically important interfacial magnetic coupling, PMA, and tunneling magnetoresistance could be achieved in a periodically stacked bilayer and can be precisely manipulated by the size effect in ultrathin scale.

7.
Nanoscale ; 10(9): 4377-4384, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29450417

RESUMO

Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO3 substrate, an epitaxial polycrystalline SrRuO3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.

8.
ACS Appl Mater Interfaces ; 9(41): 36423-36430, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28956445

RESUMO

The functional properties of oxide heterostructures depend on the interfaces accommodating ions, their spins, and structural mismatches. Here, by stabilizing tetragonal symmetry, we achieve the in-plane antiferromagnetic (AFM) ordering and dual-exchange bias in the superlattices consisting of two ferromagnets SrRuO3 (SRO) and PrMnO3 (PMO). The tetragonal symmetry of this superlattice system achieved after the octahedral rotations yield an elongation of the c-axis parameter with Ru-O-Mn bond angle close to 180°, induces an interfacial antiferromagnetic ordering, which is suppressed as the ferromagnetic (FM) ordering in the PMO layer increases. The 0.1 T in-plane cooling field (Hcool) leads to the shift (ca. -0.04 T) of minor hysteresis loop along the negative field axis due to the presence of -0.87 erg/cm2 AFM interfacial exchange coupling energy density (ERu,Mn) at 20 K. The exchange bias field (HEB) switches from negative to positive value with the increase in Hcool. For 5 T Hcool, the HEB is positive, but the ERu,Mn is -1.25 erg/cm2 for n ≤ 8 (n = number of unit cells of PMO) and 1.52 erg/cm2 for n ≥ 8. The HEB and its switching from negative to positive with the increase in Hcool are explained by the interplay of strong antiferromagnetic coupling energy and Zeeman energy at the interfaces. The results demonstrate that the SRO-PMO superlattice could be a model system for the investigation of the interfacial exchange coupling in functional oxides.

9.
Adv Mater ; 29(22)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370578

RESUMO

Transition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity. Recently, it has been proposed that additional to typical fields, the chemical potential that controls the concentration of ion vacancies in these systems may reveal an efficient alternative parameter to further tune their properties and achieve new functionalities. In this study, concretizing this proposal, the authors show that the control of the content of oxygen vacancies in perovskite thin films can indeed be used to tune their magnetic properties. Growing PrVO3 thin films epitaxially on an SrTiO3 substrate, the authors reveal a concrete pathway to achieve this effect. The authors demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percent. In turn, this strain affects the exchange interactions, producing a nontrivial evolution of Néel temperature in a range of 30 K.

10.
ACS Appl Mater Interfaces ; 7(46): 25679-84, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26523935

RESUMO

Capacitors with a dielectric material consisting of amorphous laminates of Al2O3 and TiO2 with subnanometer individual layer thicknesses can show strongly enhanced capacitance densities compared to the bulk or laminates with nanometer layer thickness. In this study, the structural and dielectric properties of such subnanometer laminates grown on silicon by state-of-the-art atomic layer deposition are investigated with varying electrode materials. The laminates show a dielectric constant reaching 95 combined with a dielectric loss (tan δ) of about 0.2. The differences of the observed dielectric properties in capacitors with varying electrodes indicate that chemical effects at the interface with the TiN electrode play a major role, while the influence of the local roughness of the individual layers is rather limited.

11.
Nano Lett ; 15(7): 4677-84, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103204

RESUMO

Epitaxial strain provides a powerful approach to manipulate physical properties of materials through rigid compression or extension of their chemical bonds via lattice-mismatch. Although symmetry-mismatch can lead to new physics by stabilizing novel interfacial structures, challenges in obtaining atomic-level structural information as well as lack of a suitable approach to separate it from the parasitical lattice-mismatch have limited the development of this field. Here, we present unambiguous experimental evidence that the symmetry-mismatch can be strongly controlled by dimensionality and significantly impact the collective electronic and magnetic functionalities in ultrathin perovskite LaCoO3/SrTiO3 heterojunctions. State-of-art diffraction and microscopy reveal that symmetry breaking dramatically modifies the interfacial structure of CoO6 octahedral building-blocks, resulting in expanded octahedron volume, reduced covalent screening, and stronger electron correlations. Such phenomena fundamentally alter the electronic and magnetic behaviors of LaCoO3 thin-films. We conclude that for epitaxial systems, correlation strength can be tuned by changing orbital hybridization, thus affecting the Coulomb repulsion, U, instead of by changing the band structure as the common paradigm in bulks. These results clarify the origin of magnetic ordering for epitaxial LaCoO3 and provide a route to manipulate electron correlation and magnetic functionality by orbital engineering at oxide heterojunctions.

12.
Sci Rep ; 5: 10255, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25975606

RESUMO

Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) (>30,000% at a temperature of 2 K and a magnetic field of 9 T) discovered in degenerate semiconducting strontium titanite (SrTiO3) single crystals capped with ultrathin SrTiO3/LaAlO3 bilayers. The low-pressure high-temperature homoepitaxial growth of several unit cells of SrTiO3 introduces oxygen vacancies and high-mobility carriers in the bulk SrTiO3, and the three-unit-cell LaAlO3 capping layer passivates the surface and improves carrier mobility by suppressing surface-defect-related scattering. The coexistence of multiple types of carriers and inhomogeneous transport lead to the emergence of CPMR. This unit-cell-level surface engineering approach is promising to be generalized to others oxides, and to realize devices with high-mobility carriers and interesting magnetoelectronic properties.

13.
Sci Rep ; 5: 8822, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25744275

RESUMO

Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries.

14.
Nano Lett ; 12(1): 275-80, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22142455

RESUMO

Rational synthesis of nanowires via the vapor-liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Óxidos/química , Semicondutores , Compostos de Estanho/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície
16.
Phys Rev Lett ; 104(4): 046804, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366729

RESUMO

Using first principle calculations we showed that the Curie temperature of manganites thin films can be increased by far more than an order of magnitude by applying appropriate strains. Our main breakthrough is that the control of the orbital ordering responsible for the spectacular T{C} increase cannot be imposed by the substrate only. Indeed, the strains, first applied by the substrate, need to be maintained over the growth direction by the alternation of the manganite layers with another appropriate material. Following these theoretical findings, we synthesized such superlattices and verified our theoretical predictions.

17.
Inorg Chem ; 47(21): 10009-16, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18831580

RESUMO

Phase-pure BiCuOSe, which is isostructural to the layered p-type transparent conductor LaCuOS, has been synthesized in high yield by a single-step hydrothermal reaction at low temperature (250 degrees C) and pressure (<20 atm). A moderate reaction temperature of 250 degrees C was sufficiently high to solubilize both Bi2O3 and Cu2O and stabilize monovalent copper and low enough to impede the oxidation of dianionic selenium. BiCuOSe exhibits a relatively high electrical conductivity (sigma approximately 3.3 S cm(-1)) and a reduced band gap (E(g) = 0.75 eV), which compare favorably with the optoelectronic properties of BiCuOS and the cerium-based oxysulfides, CeAgOS and CeCuOS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...