Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 669: 552-560, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38729003

RESUMO

HYPOTHESIS: Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS: Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS: Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.

2.
Chempluschem ; : e202300713, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456801

RESUMO

The intensive energy demands associated with solvent regeneration and CO2 release in current direct air capture (DAC) technologies makes their deployment at the massive scales (GtCO2/year) required to positively impact the climate economically unfeasible. This challenge underscores the critical need to develop new DAC processes with significantly reduced energy costs. Recently, we developed a new approach to photochemically drive efficient release of CO2 through an intermolecular proton transfer reaction by exploiting the unique properties of an indazole metastable-state photoacid (mPAH), opening a new avenue towards energy efficient on-demand CO2 release and solvent regeneration using abundant solar energy instead of heat. In this Concept Article, we will describe the principle of our photochemically-driven CO2 release approach for solvent-based DAC systems, discuss the essential prerequisites and conditions to realize this cyclable CO2 release chemistry under ambient conditions. We outline the key findings of our approach, discuss the latest developments from other research laboratories, detail approaches used to monitor DAC systems in situ, and highlight experimental procedures for validating its feasibility. We conclude with a summary and outlook into the immediate challenges that must be addressed in order to fully exploit this novel photochemically-driven approach to DAC solvent regeneration.

3.
ACS Appl Mater Interfaces ; 16(9): 12052-12061, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411063

RESUMO

Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.

4.
Phys Chem Chem Phys ; 26(5): 4062-4070, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38224171

RESUMO

Direct access to trans-cis photoisomerization in a metastable state photoacid (mPAH) remains challenging owing to the presence of competing excited-state relaxation pathways and multiple transient isomers with overlapping spectra. Here, we reveal the photoisomerization dynamics in an indazole mPAH using time-resolved fluorescence (TRF) spectroscopy by exploiting a unique property of this mPAH having fluorescence only from the trans isomer. The combination of these experimental results with time-dependent density function theory (TDDFT) calculations enables us to gain mechanistic insight into this key dynamical process.

5.
ACS Appl Mater Interfaces ; 15(37): 44533-44540, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37696028

RESUMO

Phospholipid bilayers can be described as capacitors whose capacitance per unit area (specific capacitance, Cm) is determined by their thickness and dielectric constant─independent of applied voltage. It is also widely assumed that the Cm of membranes can be treated as a "biological constant". Recently, using droplet interface bilayers (DIBs), it was shown that zwitterionic phosphatidylcholine (PC) lipid bilayers can act as voltage-dependent, nonlinear memory capacitors, or memcapacitors. When exposed to an electrical "training" stimulation protocol, capacitive energy storage in lipid membranes was enhanced in the form of long-term potentiation (LTP), which enables biological learning and long-term memory. LTP was the result of membrane restructuring and the progressive asymmetric distribution of ions across the lipid bilayer during training, which is analogous, for example, to exponential capacitive energy harvesting from self-powered nanogenerators. Here, we describe how LTP could be produced from a membrane that is continuously pumped into a nonequilibrium steady state, altering its dielectric properties. During this time, the membrane undergoes static and dynamic changes that are fed back to the system's potential energy, ultimately resulting in a membrane whose modified molecular structure supports long-term memory storage and LTP. We also show that LTP is very sensitive to different salts (KCl, NaCl, LiCl, and TmCl3), with LiCl and TmCl3 having the most profound effect in depressing LTP, relative to KCl. This effect is related to how the different cations interact with the bilayer zwitterionic PC lipid headgroups primarily through electric-field-induced changes to the statistically averaged orientations of water dipoles at the bilayer headgroup interface.


Assuntos
Bicamadas Lipídicas , Potenciação de Longa Duração , Cátions , Aprendizagem , Lecitinas
6.
J Agric Food Chem ; 71(30): 11587-11598, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466256

RESUMO

Identifying and developing ice recrystallization inhibitors from sustainable food proteins such as soy protein isolate (SPI) can lead to practical applications in both pharmaceutical and food industries. The objective of this study was to investigate the ice recrystallization inhibition (IRI) activity of SPI hydrolysates, and this was achieved by using an IRI activity-guided fractionation approach and relating IRI activity to interfacial molecular activity measured by vibrational sum frequency generation (VSFG). In addition, the impact of molecular weight (MW) and enzyme specificity was analyzed using three different proteases (Alcalase, trypsin, and pancreatin) and varying hydrolysis times. Using preparative chromatography, hydrolysates from each enzyme treatment were fractionated into five different MW fractions (F1-F5), which were then characterized by high-performance liquid chromatography (HPLC). All SPI hydrolysates had IRI activity, resulting in a 57-29% ice crystal diameter reduction when compared to native SPI. The F1 fraction (of 4-14 kDa) was most effective among all tested hydrolysates, while the lower MW peptide fractions lacked activity. One sample (SPI-ALC 20-F1) had a 52% reduction of ice crystal size at a lower concentration of 2% compared to the typical 4% used. SFG showed a difference in H-bonding and hydrophobic interactions of the molecules on the water/air interface, which may be linked to IRI activity. This study demonstrates for the first time the ability of SPI hydrolysates to inhibit ice crystal growth and the potential application of SFG to study molecular interaction at the interface that may help illustrate the mechanism of action.


Assuntos
Gelo , Proteínas de Soja , Proteínas de Soja/química , Hidrolisados de Proteína/química , Peptídeo Hidrolases/metabolismo , Endopeptidases
7.
Angew Chem Int Ed Engl ; 62(29): e202304957, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198131

RESUMO

One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2 /year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically-driven approach for CO2 release by exploiting the unique properties of an indazole metastable-state photoacid (mPAH). Our measurements on simulated and amino acid-based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid-based DAC systems, respectively. Our results confirm the feasibility of on-demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents.

8.
J Phys Chem B ; 127(21): 4886-4895, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216432

RESUMO

Liquid/liquid (L/L) interfaces play a key, yet poorly understood, role in a range of complex chemical phenomena where time-evolving interfacial structures and transient supramolecular assemblies act as gatekeepers to function. Here, we employ surface-specific vibrational sum frequency generation combined with neutron and X-ray scattering methods to track the transport of dioctyl phosphoric acid (DOP) and di-(2-ethylhexyl) phosphoric acid (DEHPA) ligands used in solvent extraction at buried oil/aqueous interfaces away from equilibrium. Our results show evidence for a dynamic interfacial restructuring at low ligand concentrations in contrast to expectation. These time-varying interfaces arise from the transport of sparingly soluble interfacial ligands into the neighboring aqueous phase. These results support a proposed "antagonistic" role of ligand complexation in the aqueous phase that could serve as a holdback mechanism in kinetic liquid extractions. These findings provide new insights into interfacially controlled chemical transport at L/L interfaces and how these interfaces vary chemically, structurally, and temporally in a concentration-dependent manner and present potential avenues to design selective kinetic separations.

9.
ACS Appl Mater Interfaces ; 15(15): 19634-19645, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-36944180

RESUMO

As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.

10.
Nanoscale ; 15(3): 1042-1052, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421060

RESUMO

To understand and resolve adsorption, reconfiguration, and equilibrium conformations of charged star copolymers, we carried out an integrated experimental and coarse-grained molecular dynamics simulation study of the assembly process at the oil-water interface. This is important to guide development of novel surfactants or amphiphiles for chemical transformations and separations. The star block copolymer consisted of arms that are comprised of hydrophilic-hydrophobic block copolymers that are covalently tethered via the hydrophobic blocks to one point. The hydrophobic core represents polystyrene (PS) chains, while the hydrophilic corona represents quaternized poly(2-vinylpyridine) (P2VP) chains. The P2VP is modeled to become protonated when in contact with an acidic aqueous phase, thereby massively increasing the hydrophilicity of this block, and changing the nature of the star at the oil-water interface. This results in a configurational change whereby the chains comprising the hydrophilic corona are significantly stretched into the aqueous phase, while the hydrophobic core remains solubilized in the oil phase. In the simulations, we followed the kinetics of the anchoring and assembly of the star block copolymer at the interface, monitoring the lateral assembly, and the subsequent reconfiguration of the star via changes in the interfacial tension that varies as the degree-of-protonation increases. At low fractions of protonation, the arm cannot fully partition into the aqueous side of the interface and instead interacts with other arms in the oil phase forming a network near the interface. These insights were used to interpret the non-monotonic dependence of pH with the asymptotic interfacial tension from pendant drop tensiometry experiments and spectral signatures of aromatic stretches seen in vibrational sum frequency generation (SFG) spectroscopy. We describe the relationship of interfacial tension to the star assembly via the Frumkin isotherm, which phenomenologically describes anti-cooperativity in adsorbing stars to the interface due to crowding. Although our model explicitly considers long-range electrostatics, the contribution of electrostatics to interfacial tension is small and brought about by strong counterion condensation at the interface. These results provide key insights into resolving the adsorption, reconfiguration, and equilibrium conformations of charged star block copolymers as surfactants.

11.
J Phys Chem Lett ; 13(46): 10889-10896, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36394318

RESUMO

Conventional wisdom suggests that cations play a minimal role in the assembly of cationic amphiphiles. Here, we show that at liquid/liquid (L/L) interfaces, specific cation effects can modulate the assemblies of hydrophobic tails in an oil phase despite being attached to cationic headgroups in the aqueous phase. We used oligo-dimethylsiloxane (ODMS) methyl imidazolium amphiphiles to identify these specific interactions at hexadecane/aqueous interfaces. Small cations, such as Li+, bind to the O atoms in the ODMS tail and pin it to the interface, thereby imposing a kinked conformation─as evidenced by vibrational sum frequency generation spectroscopy and molecular dynamics simulations. While larger Cs+ ions more readily partition to the interface, they do not form analogous complexes. Our data not only point to ways for controlling amphiphile structure at L/L interfaces but also suggest a means for the separation of Li+, or related applications, in soft-matter electronics.


Assuntos
Simulação de Dinâmica Molecular , Água , Cátions , Interações Hidrofóbicas e Hidrofílicas , Água/química
12.
Biointerphases ; 17(2): 021201, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473296

RESUMO

In this tutorial review, we discuss how the choice of upconversion pulse shape in broadband vibrational sum-frequency generation (SFG) spectrometer design impacts the chemical or physical insights one can obtain from a set of measurements. A time-domain picture of a vibrational coherence being mapped by a second optical field is described and the implications of how this mapping, or upconversion process, takes place are given in the context of several popular and emerging approaches found in the literature. Emphasis is placed on broadband frequency-domain measurements, where the choice of upconversion pulse enhances or limits the information contained in the SFG spectrum. We conclude with an outline for a flexible approach to SFG upconversion using pulse-shaping methods and a simple guide to design and optimize the associated instrumentation.


Assuntos
Vibração
13.
J Colloid Interface Sci ; 616: 221-233, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203035

RESUMO

HYPOTHESIS: We hypothesize that varying the chemical structure of the monomeric unit in a polymer will affect the surface structure and interfacial molecular group orientations of the polymer film leveraging its response to solvents of different chemical affinities. EXPERIMENTS: Poly (2-methoxy ethyl methacrylate) and poly (2-tertbutoxy ethyl methacrylate) thin films exposed to either deuterated water (D2O) or deuterated chloroform (CDCl3) were studied by sum frequency generation (SFG) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM) at the polymer-solvent interface, supported with molecular simulation studies. FINDINGS: SFG spectral analysis of the polymer thin films corroborated molecular re-organization at the surface when exposed to different chemical environments. The AFM height images of the polymer surfaces were homogeneously flat under CDCl3 and showed swollen regions under D2O. Following the removal of D2O, the exposed areas have imprinted, recessed locations and exposure to CDCl3 resulted in the formation of aggregates. The chemical affinity and characteristics of the solvents played a role in conformational change at the polymer surface. It had direct implications to interfacial processes involving adsorption, permeation which eventually leads to swelling, deformation or aggregation, and possibly dissolution.


Assuntos
Metacrilatos , Polímeros , Metacrilatos/química , Microscopia de Força Atômica , Polímeros/química , Solventes/química , Propriedades de Superfície
14.
J Colloid Interface Sci ; 609: 807-814, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34872722

RESUMO

HYPOTHESIS: Organophosphorus-based ligands represent a versatile set of solvent extraction reagents whose chemical makeup plays an important role in extraction mechanism. We hypothesize that the branching of the extractant hydrophobic tail and its oil-phase solvation affect the liquid/liquid interfacial structure. Understanding the structure mediated adsorption and interfacial ordering becomes key in designing ligands with enhanced selectivity and efficiency for targeted extractions. EXPERIMENT: We employed vibrational sum frequency generation spectroscopy and interfacial tension measurements to extract thermodynamic adsorption energies, map interfacial ordering, and rationalize disparate behaviors of model di-(2-ethylhexyl) phosphoric acid and dioctyl phosphoric acid ligands at the hexadecane water interface. FINDINGS: With increased surface loading, ligands with branched hydrophobic tails formed stable interfaces at much lower concentrations than those observed for ligands with linear alkyl tails. The lack of an oil phase and associated solvation results in markedly different interfacial properties, and thus measurements made at air/liquid surfaces cannot be assumed to correlate with the processes occurring at buried liquid/liquid interfaces. We attribute these differences in the surface mediated self-assembly to key variations in hydrophobic interactions and tail solvation taking place in the oil phase demonstrating that interactions in both the polar and nonpolar phases are essential to understand self-assembly and function.


Assuntos
Água , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Propriedades de Superfície
15.
ACS Nano ; 15(9): 14285-14294, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34516085

RESUMO

The self-assembly of surfactant monolayers at interfaces plays a sweeping role in tasks ranging from household cleaning to the regulation of the respiratory system. The synergy between different nanoscale species at an interface can yield assemblies with exceptional properties, which enhance or modulate their function. However, understanding the mechanisms underlying coassembly, as well as the effects of intermolecular interactions at an interface, remains an emerging and challenging field of study. Herein, we study the interactions of gold nanoparticles striped with hydrophobic and hydrophilic ligands with phospholipids at a liquid-liquid interface and the resulting surface-bound complexes. We show that these nanoparticles, which are themselves minimally surface active, have a direct concentration-dependent effect on the rapid reduction of tension for assembling phospholipids at the interface, implying molecular coassembly. Through the use of sum frequency generation vibrational spectroscopy, we reveal that nanoparticles impart structural disorder to the lipid molecular layers, which is related to the increased volumes that amphiphiles can sample at the curved surface of a particle. The results strongly suggest that hydrophobic and electrostatic attractions imparted by nanoparticle functionalization drive lipid-nanoparticle complex assembly at the interface, which synergistically aids lipid adsorption even when lipids and nanoparticles approach the interface from opposite phases. The use of tensiometric and spectroscopic analyses reveals a physical picture of the system at the nanoscale, allowing for a quantitative analysis of the intermolecular behavior that can be extended to other systems.


Assuntos
Ouro , Nanopartículas Metálicas
16.
Analyst ; 146(9): 3062-3072, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949432

RESUMO

Nonlinear optical microscopy that leverages an objective based total internal reflection (TIR) excitation scheme is an attractive means for rapid, wide-field imaging with enhanced surface sensitivity. Through select combinations of distinct modalities, one can, in principle, access complementary chemical and structural information for various chemical species near interfaces. Here, we report a successful implementation of such a wide-field nonlinear optical microscope system, which combines coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), second harmonic generation (SHG), and sum frequency generation (SFG) modalities on the same platform. The intense optical fields needed to drive these high order nonlinear optical processes are achieved through the use of femtosecond pulsed light in combination with the intrinsic field confinement induced by TIR over a large field of view. The performance of our multimodal microscope was first assessed through the experimental determination of its chemical fidelity, intensity and polarization dependences, and spatial resolution using a set of well-defined model systems. Subsequently, its unique capabilities were validated through imaging complex biological systems, including Hydrangea quercifolia pollen grains and Pantoea sp. YR343 bacterial cells. Specifically, the spatial distribution of different molecular groups in the former was visualized via vibrational contrast mechanisms of CARS, whereas co-registered TPF imaging allowed the identification of spatially localized intrinsic fluorophores. We further demonstrate the feasibility of our microscope for wide-field CARS imaging on live cells through independent characterization of cell viability using spatially co-registered TPF imaging. This approach to TIR enabled wide-field imaging is expected to provide new insights into bacterial strains and their interactions with other species in the rhizosphere in a time-resolved and chemically selective manner.


Assuntos
Microscopia , Análise Espectral Raman , Imagem Óptica , Fótons , Vibração
17.
J Colloid Interface Sci ; 580: 645-659, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712471

RESUMO

HYPOTHESIS: Copolymers are developed to enhance the overall physical and chemical properties of polymers. The surface nature of a copolymer is relevant to creating efficient materials to improve adhesion and biocompatibility. We hypothesize that the improved adhesion, as a surface property, is due to phase separation, surface segregation, and the overall molecular organization of different polymer components at the copolymer surface. EXPERIMENTS: The surface structure of a copolymer composed of 2-hydroxyethyl methacrylate (HEMA) monomer and 2-phenoxyethyl methacrylate (PhEMA) monomer was analyzed in comparison to the polyHEMA and polyPhEMA homopolymers using atomic force microscopy (AFM) and sum frequency generation (SFG) spectroscopy. FINDINGS: The contrast in the phase images was due to the variance in the hydrophobic level provided by the hydroxyl and phenoxy modified monomers in the copolymer. The distribution of the adhesion values, supporting the presence of hydrophobic moieties, across the polymer surface defined the surface segregation of these two components. SFG spectra of the copolymer thin film showed combined spectral features of both polyHEMA and polyPhEMA thin films at the polymer surface. The tilt angles of the alpha-methyl group of homopolymers using the polarization intensity ratio analysis and the polarization mapping method were estimated to be in the range from 48° to 66°.

18.
Opt Lett ; 45(11): 3087-3090, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479466

RESUMO

Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields necessary to drive the third-order optical responses over the large focal region. Here, we report a new wide-field CARS microscope enabled by a total internal reflection excitation scheme using a femtosecond Ti:Sapphire oscillator to generate pump and broadband near-infrared Stokes pulses. The spectrally broad Stokes pulse, in combination with its inherent chirp, offers not only access to a wide range of Raman modes spanning ∼1000 to ∼3500cm-1 but also a straightforward means to select vibrational transitions within this range by simply varying the time delay between the pulses. The unique capabilities of this wide-field CARS microscope were validated by acquiring high-quality CARS images from the model and complex biological samples on conventional microscope coverslips.

19.
J Colloid Interface Sci ; 568: 221-233, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088452

RESUMO

HYPOTHESIS: Surfactants are commonly used as corrosion inhibitors for oil-and-gas pipelines. The alkyl chain of surfactants and their overall conformation contributes to the adsorption, flotation, and foam separation in the inhibition process. We hypothesize that the conformation of shorter alkyl chains and chemical nature of surfactants has an effect on the ordering of water molecules at the air-water interface which is not yet well understood. EXPERIMENTS: Alkyl (C4, C6, C8, C10, and C12) dimethylbenzylammonium bromides (Quats) were synthesized. Aqueous solutions at 0% and with different salt concentrations were studied at the air-liquid interface using sum frequency generation spectroscopy. Surface tension and pH measurement were also conducted for comparison. FINDINGS: Surfactant solutions at 0%, 1%, and 10% salt showed a zigzag trend for the number of gauche defects. At 0% salt, an increasing trend of OH band intensity at 3182 cm-1 was observed from C6 to C12 SFG spectra. Yet, C4 showed a more prominent SFG signal from strongly hydrogen-bonded water molecules compared to C6. The headgroup's chemical nature was found to play a role in the ordering of water molecules for a C4 alkyl chain length. The OH band intensity decreases with increasing ionic strength.

20.
Langmuir ; 36(1): 180-193, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31838850

RESUMO

Sensing in molecularly imprinted polymers (MIPs) requires specific interactions of the imprinted polymer and the approaching template molecule. These interactions are affected by the morphology of the polymer surface, the affinity of the template molecule to the polymer network, and the steric approach. In this particular study, a template molecule, metronidazole, is studied with respect to the typically used methacrylic acid-based imprinted polymer using a combination of bulk and surface techniques. The resulting infrared (IR) spectra exhibited the presence of the template molecule in the polymer matrix as well as their efficient removal after washing. Dipping of the MIP according to what is expected of facile sensing in an aqueous solution of metronidazole did not show any presence of the template molecule in the bulk of the MIP, as observed by IR spectroscopy. However, using sum frequency generation (SFG) spectroscopy, the CH aromatic stretch of the imidazole ring positioned at ∼3100 cm-1 was observed at the polymer surface, including its inner pores or cavities, and at the buried polymer-fused silica interface after dipping. SFG studies have also shown the vibrational signatures of the polymer matrix, the presence of the template molecule on the surface, and the detection of residual template molecules after washing. Increasing the washing time to 50 min has proven to be less effective than increasing the washing cycles to three. However, after the third cycle, reorganization of the polymer matrix was evident as also the complete removal of the template molecule. The observed changes from the acquired images using scanning electron microscopy and atomic force microscopy show the structural morphologies of MIPs and a good distribution of the pores across the MIP surface. The study demonstrates the importance of combining both bulk and surface characterization in providing insight into the template molecule-polymer network interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...