Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Agric Food Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743679

RESUMO

The objective was to understand the impacts of secondary lipid oxidation products on calpain-2 activity and autolysis and, subsequently, to determine the quantity and localization of modification sites. 2-Hexenal and 4-hydroxynonenal incubation significantly decreased calpain-2 activity and slowed the progression of autolysis, while malondialdehyde had minimal impact on calpain-2 activity and autolysis. Specific modification sites were determined with LC-MS/MS, including distinct malondialdehyde modification sites on the calpain-2 catalytic and regulatory subunits. 2-Hexenal modification sites were observed on the calpain-2 catalytic subunit. Intact protein mass analysis with MALDI-MS revealed that a significant number of modifications on the calpain-2 catalytic and regulatory subunits are likely to exist. These observations confirm that specific lipid oxidation products modify calpain-2 and may affect the calpain-2 functionality. The results of these novel experiments have implications for healthy tissue metabolism, skeletal muscle growth, and post-mortem meat tenderness development.

2.
Plant Physiol Biochem ; 208: 108449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503188

RESUMO

Five rootstock cultivars of differing vigor: vigorous ('Atlas™' and 'Bright's Hybrid® 5'), standard ('Krymsk® 86' and 'Lovell') and dwarfing ('Krymsk® 1') grafted with 'Redhaven' as the scion were studied for their impact on productivity, mid-canopy photosynthetic active radiation transmission (i.e., light availability) and internal fruit quality. Αverage yield (kg per tree) and fruit count increased significantly with increasing vigor (trunk cross sectional area, TCSA). Α detailed peach fruit quality analysis on fruit of equal maturity (based on the index of absorbance difference, IAD) coming from trees with equal crop load (no. of fruit cm-2 of TCSA) characterized the direct impact of rootstock vigor on peach internal quality [dry matter content (DMC) and soluble solids concentration (SSC)]. DMC and SSC increased significantly with decreasing vigor and increasing light availability, potentially due to reduced intra-tree shading and better light distribution within the canopy. Physiologically characterized peach fruit mesocarp was further analyzed by non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS). Metabolite distribution was associated with rootstock vigor class, mid-canopy light availability and fruit quality characteristics. Fructose, glucose, sorbose, neochlorogenic and quinic acids, catechin and sorbitol were associated with high light environments and enhanced quality traits, while sucrose, butanoic and malic acids related to low light conditions and inferior fruit quality. These outcomes show that while rootstock genotype and vigor are influencing peach tree productivity and yield, their effect on manipulating the light environment within the canopy also plays a significant role in fruit quality development.


Assuntos
Frutas , Fotossíntese , Salicilanilidas , Frutas/metabolismo , Glucose/metabolismo , Frutose/metabolismo
3.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410449

RESUMO

Background: Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil microbiome interactions. Currently, there is limited understanding on the diversity of cover crop phytohormone root exudation patterns and how these chemical messages selectively enrich specific microbial taxa and functionalities in agricultural soils. Results: Here, we link variability in cover crop root exudate composition to changes in soil microbiome functionality. Exudate chemical profiles from 4 cover crop species (Sorghum bicolor, Vicia villosa, Brassica napus, and Secale cereal) were used as the chemical inputs to decipher microbial responses. These distinct exudate profiles, along with a no exudate control, were amended to agricultural soil microcosms with microbial responses tracked over time using metabolomes and genome-resolved metatranscriptomes. Our findings illustrated microbial metabolic patterns were unique in response to cover crop exudate inputs over time, particularly by sorghum and cereal rye amended microcosms where we identify novel microbial members (at the genera and family level) who produced IAA and GA4 over time. We also identify broad changes in microbial nitrogen cycling in response chemical inputs. Conclusions: We highlight that root exudate amendments alter microbial community function and phytohormone metabolisms, particularly in response to root exudates isolated from cereal rye and sorghum plants. Additionally, we constructed a soil microbial genomic catalog of microorganisms responding to commonly used cover crops, a public resource for agriculturally-relevant microbes. Many of our exudate-stimulated microorganisms are representatives from poorly characterized or novel taxa, highlighting the yet to be discovered metabolic reservoir harbored in agricultural soils. Our findings emphasize the tractability of high-resolution multiomics approaches to investigate processes relevant for agricultural soils, opening the possibility of targeting specific soil biogeochemical outcomes through biological precision agricultural practices that use cover crops and the microbiome as levers for enhanced crop production.

4.
mSystems ; 9(1): e0119023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132569

RESUMO

The development of cereal crops with high nitrogen use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improving crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse Sorghum bicolor lines under sufficient and deficient nitrogen (N). Amplicon sequencing and untargeted gas chromatography-mass spectrometry were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacterial communities and root metabolite composition of sorghum. We found a positive correlation between sorghum NUE and bacterial richness and diversity in the rhizosphere. The greater alpha diversity in high NUE lines was associated with the decreased abundance of a dominant bacterial taxon, Pseudomonas. Multiple strong correlations were detected between root metabolites and rhizosphere bacterial communities in response to low N stress. This indicates that the shift in the sorghum microbiome due to low N is associated with the root metabolites of the host plant. Taken together, our findings suggest that host genetic regulation of root metabolites plays a role in defining the root-associated microbiome of sorghum genotypes differing in NUE and tolerance to low N stress.IMPORTANCEThe development of crops that are more nitrogen use-efficient (NUE) is critical for the future of the enhanced sustainability of agriculture worldwide. This objective has been pursued mainly through plant breeding and plant molecular engineering, but these approaches have had only limited success. Therefore, a different strategy that leverages soil microbes needs to be fully explored because it is known that soil microbes improve plant growth through multiple mechanisms. To design approaches that use the soil microbiome to increase NUE, it will first be essential to understand the relationship among soil microbes, root metabolites, and crop productivity. Using this approach, we demonstrated that certain key metabolites and specific microbes are associated with high and low sorghum NUE in a field study. This important information provides a new path forward for developing crop genotypes that have increased NUE through the positive contribution of soil microbes.


Assuntos
Sorghum , Sorghum/genética , Grão Comestível/química , Nitrogênio/análise , Melhoramento Vegetal , Solo/química , Produtos Agrícolas/metabolismo
5.
J Econ Entomol ; 116(5): 1706-1714, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37450624

RESUMO

Hemp is rapidly becoming a crop of global agricultural importance, and one of the more serious pests of this crop is hemp russet mite (HRM) Aculops cannabicola (Acari: Eriophyidae). Significant knowledge gaps presently exist regarding critical aspects of pest biology, quantification of crop damage, and efficacy of pesticides. Here we assessed the role of cannabidiol (CBD) on HRM performance, efficacy of sulfur treatments in field trials, and effect of hot water immersion with and without surfactants in reducing HRM counts on hemp cuttings. We found that HRM fecundity was reduced on a high-CBD cultivar compared with a low-CBD cultivar in detached leaf assays. In contrast, HRM fecundity and survival were not impacted when reared on high-CBD diet in artificial feeding assays. This suggests that cannabinoids other than CBD may aid in reduction of mite populations on the high-CBD cultivar. Sulfur sprays reduced HRM populations by up to 98% with the greatest effects seen in plants receiving dual applications, one during the vegetative period in July and the second at the initiation of flowering in August. Yields of plants treated with sulfur increased by up to 33%, and there was a further increase in cannabinoid production by up to 45% relative to untreated plants. Hot water immersion treatments with and without surfactant solution reduced HRM on infested hemp cuttings, and no phytotoxicity was observed. This study provides novel approaches to mitigating HRM at multiple stages in hemp production.

6.
J Agric Food Chem ; 71(30): 11373-11385, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477948

RESUMO

Cover cropping has emerged as a sustainable alternative to traditional crop rotational practices, yet the effects of variable root exudation from cover crop species and cultivars within species remains unclear. Here, we assess the chemical heterogeneity of root exudates from 16 commonly used cover crop species as well as 3 distinct cultivars of hairy vetch. Plants were grown hydroponically and analyzed via nontargeted gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), and targeted LC-MS/MS to evaluate patterns in root exudate composition across species and functional plant type. Overall, root exudation profiles are heterogeneous across crop species and cultivars. Species within legumes stand out as a unique functional group of plants capable of producing distinct chemical environments rich with complex secondary metabolites, such as triterpenoid saponins (soyasaponins), isoflavonoids, and flavonoids.


Assuntos
Fabaceae , Espectrometria de Massas em Tandem , Cromatografia Líquida , Fabaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Plantas , Raízes de Plantas/química
7.
J Agric Food Chem ; 71(20): 7836-7846, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167568

RESUMO

The objective of the current study was to evaluate the effects of lipid peroxidation products, malondialdehyde (MDA), hexenal, and 4-hydroxynonenal (HNE), on calpain-1 function, and liquid chromatography and tandem mass spectrometry (LC-MS/MS) identification of adducts on calpain-1. Calpain-1 activity slightly increased after incubation with 100 µM MDA but not with 500 and 1000 µM MDA. However, calpain-1 activity was lowered by hexenal and HNE at 100, 500, and 1000 µM. No difference in calpain-1 autolysis was observed between the control and 1000 µM MDA. However, 1000 µM hexenal and HNE treatments slowed the calpain-1 autolysis. Adducts of MDA were detected on glutamine, arginine, lysine, histidine, and asparagine residues via Schiff base formation, while HNE adducts were detected on histidine, lysine, glutamine, and asparagine residues via Michael addition. These results are the first to demonstrate that lipid peroxidation products can impact calpain-1 activity in a concentration-dependent manner and may impact the development of meat tenderness postmortem.


Assuntos
Calpaína , Lisina , Peroxidação de Lipídeos , Calpaína/metabolismo , Lisina/química , Histidina/metabolismo , Glutamina/metabolismo , Asparagina/metabolismo , Cromatografia Líquida/métodos , Hexobarbital , Espectrometria de Massas em Tandem , Aldeídos/química
8.
Plant Physiol Biochem ; 196: 1019-1031, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36898214

RESUMO

Manipulating the crop load in peach trees determines carbon supply and optimum balance between fruit yield and quality potentials. The impact of carbon supply on peach fruit quality was assessed in three development stages (S2, S3, S4) on fruit of equal maturity from trees that were carbon (C) starved (unthinned) and sufficient (thinned). Previous studies determined that primary metabolites of peach fruit mesocarp are mainly linked with developmental processes, thus, the secondary metabolite profile was assessed using non-targeted liquid chromatography mass-spectrometry (LC-MS). Carbon sufficient (C-sufficient) fruit demonstrated superior quality attributes as compared to C-starved fruit. Early metabolic shifts in the secondary metabolome appear to prime quality at harvest. Enhanced C-availability facilitated the increased and consistent synthesis of flavonoids, like catechin, epicatechin and eriodyctiol, via the phenylpropanoid pathway, providing a link between the metabolome and fruit quality, and serving as signatures of C-sufficiency during peach fruit development.


Assuntos
Frutas , Prunus persica , Frutas/metabolismo , Metaboloma , Metabolismo Secundário , Cromatografia Líquida , Prunus persica/genética
9.
J Food Sci Technol ; 59(10): 4134-4140, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36193374

RESUMO

Rapid Evaporative Ionization Mass Spectrometry (REIMS) is a type of ambient ionization mass spectrometry, which enables real-time evaluation of several complex traits from a single measurement. The objective of this study was to evaluate the capability of REIMS analysis of raw samples coupled with chemometrics to accurately identify and predict cooked beef palatability. REIMS analysis and consumer sensory evaluation were conducted for beef arm center roasts (n = 20), top loin steaks (n = 20), top sirloin steaks (n = 20), and 20% lipid ground beef (n = 20). These data were used to train predictive models for six classification sets representing different sensory traits. The maximum prediction accuracies achieved (from high to low): beefy flavor acceptance (86.25%), juiciness acceptance (83.75%), overall acceptance (81.25%), overall flavor acceptance (81.25%), grilled flavor acceptance (78.75%), and tenderness acceptance (75%). The current study demonstrates that REIMS analysis of raw meat has the potential to predict and classify cooked beef palatability. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05562-6.

10.
Appl Environ Microbiol ; 88(11): e0022622, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35536051

RESUMO

Root exudation is one of the primary processes that mediate interactions between plant roots, microorganisms, and the soil matrix, yet the mechanisms by which exudation alters microbial metabolism in soils have been challenging to unravel. Here, utilizing distinct sorghum genotypes, we characterized the chemical heterogeneity between root exudates and the effects of that variability on soil microbial membership and metabolism. Distinct exudate chemical profiles were quantified and used to formulate synthetic root exudate treatments: a high-organic-acid treatment (HOT) and a high-sugar treatment (HST). To parse the response of the soil microbiome to different exudate regimens, laboratory soil reactors were amended with these root exudate treatments as well as a nonexudate control. Amplicon sequencing of the 16S rRNA gene illustrated distinct microbial diversity patterns and membership in response to HST, HOT, or control amendments. Exometabolite changes reflected these microbial community changes, and we observed enrichment of organic and amino acids, as well as possible phytohormones in the HST relative to the HOT and control. Linking the metabolic capacity of metagenome-assembled genomes in the HST to the exometabolite patterns, we identified microorganisms that could produce these phytohormones. Our findings emphasize the tractability of high-resolution multiomics tools to investigate soil microbiomes, opening the possibility of manipulating native microbial communities to improve specific soil microbial functions and enhance crop production. IMPORTANCE Decrypting the chemical interactions between plant roots and the soil microbiome is a gateway for future manipulation and management of the rhizosphere, a soil compartment critical to promoting plant fitness and yields. Our experimental results demonstrate how soil microbial community and genomic diversity is influenced by root exudates of differing chemical compositions and how changes in this microbiome result in altered production of plant-relevant metabolites. Together, these findings demonstrate the tractability of high-resolution multiomics tools to investigate soil microbiomes and provide new information on plant-soil environments useful for the development of efficient and precise microbiota management strategies in agricultural systems.


Assuntos
Microbiota , Solo , Exsudatos e Transudatos , Microbiota/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rizosfera , Solo/química , Microbiologia do Solo
11.
Anal Bioanal Chem ; 414(15): 4391-4399, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35091760

RESUMO

Short-chain fatty acids (SCFAs) are volatile fatty acids produced by gut microbial fermentation of dietary nondigestible carbohydrates. Acetate, propionate, and butyrate SCFA measures are important to clinical and nutritional studies for their established roles in promoting healthy immune and gut function. Additionally, circulating SCFAs may influence the metabolism and allied function of additional tissues and organs. The accurate quantification of SCFAs in plasma/serum is critical to understanding the biological role of SCFAs. The low concentrations of circulating SCFAs and their volatile nature present challenges for quantitative analysis. Herein, we report a sensitive method for SCFA quantification via extraction with methyl tert-butyl ether after plasma/serum acidification. The organic extract of SCFAs is injected directly with separation and detection using a polar GC column coupled to mass spectrometry. The solvent-to-sample ratio, plasma volume, and amount of HCl needed for SCFA protonation were optimized. Method validation shows good within-day and inter-day repeatability. The limit of detection was 0.3-0.6 µg/mL for acetate and 0.03-0.12 µg/mL for propionate and butyrate. Successful application of this method on clinical plasma and serum samples was demonstrated in six datasets. By simplifying the sample preparation procedure, the present method reduces the risk of contamination, lowers the cost of analysis, increases throughput, and offers the potential for automated sample preparation.


Assuntos
Ácidos Graxos Voláteis , Propionatos , Acetatos/análise , Butiratos/análise , Ácidos Graxos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos
12.
Sci Rep ; 11(1): 21801, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750475

RESUMO

The last two decades have seen a dramatic shift in cannabis legislation around the world. Cannabis products are now widely available and commercial production and use of phytocannabinoid products is rapidly growing. However, this growth is outpacing the research needed to elucidate the therapeutic efficacy of the myriad of chemical compounds found primarily in the flower of the female cannabis plant. This lack of research and corresponding regulation has resulted in processing methods, products, and terminology that are variable and confusing for consumers. Importantly, the impact of processing methods on the resulting chemical profile of full spectrum cannabis extracts is not well understood. As a first step in addressing this knowledge gap we have utilized a combination of analytical approaches to characterize the broad chemical composition of a single cannabis cultivar that was processed using previously optimized and commonly used commercial extraction protocols including alcoholic solvents and super critical carbon dioxide. Significant variation in the bioactive chemical profile was observed in the extracts resulting from the different protocols demonstrating the need for further research regarding the influence of processing on therapeutic efficacy as well as the importance of labeling in the marketing of multi-component cannabis products.

13.
Hortic Res ; 8(1): 160, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193823

RESUMO

Horticulturists are interested in evaluating how cultivar, environment, or production system inputs can affect postharvest quality. Ambient mass spectrometry approaches enable analysis of minimally processed samples under ambient conditions and offer an attractive high-throughput alternative for assessing quality characteristics in plant products. Here, we evaluate direct analysis in real time (DART-MS) mass spectrometry and rapid evaporative ionization-mass spectrometry (REIMS) to assess quality characteristics in various pepper (Capsicum annuum L.) cultivars. DART-MS exhibited the ability to discriminate between pod colors and pungency based on chemical fingerprints, while REIMS could distinguish pepper market class (e.g., bell, lunchbox, and popper). Furthermore, DART-MS analysis resulted in the putative detection of important bioactive compounds in human diet such as vitamin C, p-coumaric acid, and capsaicin. The results of this study demonstrate the potential for these approaches as accessible and reliable tools for high throughput screening of pepper quality.

14.
BMC Bioinformatics ; 22(1): 362, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229628

RESUMO

BACKGROUND: Microbiome studies have uncovered associations between microbes and human, animal, and plant health outcomes. This has led to an interest in developing microbial interventions for treatment of disease and optimization of crop yields which requires identification of microbiome features that impact the outcome in the population of interest. That task is challenging because of the high dimensionality of microbiome data and the confounding that results from the complex and dynamic interactions among host, environment, and microbiome. In the presence of such confounding, variable selection and estimation procedures may have unsatisfactory performance in identifying microbial features with an effect on the outcome. RESULTS: In this manuscript, we aim to estimate population-level effects of individual microbiome features while controlling for confounding by a categorical variable. Due to the high dimensionality and confounding-induced correlation between features, we propose feature screening, selection, and estimation conditional on each stratum of the confounder followed by a standardization approach to estimation of population-level effects of individual features. Comprehensive simulation studies demonstrate the advantages of our approach in recovering relevant features. Utilizing a potential-outcomes framework, we outline assumptions required to ascribe causal, rather than associational, interpretations to the identified microbiome effects. We conducted an agricultural study of the rhizosphere microbiome of sorghum in which nitrogen fertilizer application is a confounding variable. In this study, the proposed approach identified microbial taxa that are consistent with biological understanding of potential plant-microbe interactions. CONCLUSIONS: Standardization enables more accurate identification of individual microbiome features with an effect on the outcome of interest compared to other variable selection and estimation procedures when there is confounding by a categorical variable.


Assuntos
Microbiota , Animais , Fatores de Confusão Epidemiológicos , Humanos , Plantas , Padrões de Referência , Rizosfera
15.
Curr Dev Nutr ; 5(2): nzaa180, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33644632

RESUMO

BACKGROUND: Microgreens are the young leafy greens of many vegetables, herbs, grains, and flowers with potential to promote human health and sustainably diversify the global food system. For successful further integration into the global food system and evaluation of their health impacts, it is critical to elucidate and optimize their nutritional quality. OBJECTIVES: We aimed to comprehensively evaluate the metabolite and mineral contents of 6 microgreen species, and the influence of maturity on their contents. METHODS: Plant species evaluated were from the Brassicaceae (arugula, broccoli, and red cabbage), Amaranthaceae (red beet and red amaranth), and Fabaceae (pea) plant families. Nontargeted metabolomics and ionomics analyses were performed to examine the metabolites and minerals, respectively, in each microgreen species and its mature counterpart. RESULTS: Nontargeted metabolomics analysis detected 3321 compounds, 1263 of which were annotated and included nutrients and bioactive compounds. Ionomics analysis detected and quantified 26 minerals including macrominerals, trace minerals, ultratrace minerals, and other metals. Principal component analysis indicated that microgreens have distinct metabolite and mineral profiles compared with one another and with their mature counterparts. Several compounds were higher (P  < 0.05; fold change ≥2) in microgreens compared with their mature counterparts, whereas some were not different or lower. In many cases, compounds that were higher in microgreens compared with the mature counterpart were also unique to that microgreen species. CONCLUSIONS: These data provide evidence for the nutritional quality of microgreens, and can inform future research and development aimed at characterizing and optimizing microgreen nutritional quality and health impacts.

16.
Meat Sci ; 181: 108333, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33067082

RESUMO

Increasing demands are being placed on meat producers to verify more about their product with regards to safety, quality and authenticity. There are many methods that can detect aspects of these parameters in meat, yet most are too slow to keep up with the demands of modern meat processing plants and supply chains. A new technology, Rapid Evaporative Ionisation Mass Spectrometry (REIMS), has the potential to bridge the gap between advanced laboratory measurements and technology that can screen for quality, safety and authenticity parameters in a single measurement. Analysis with REIMS generates a detailed mass spectral fingerprint representative of a meat sample without the need for sample processing. REIMS has successfully been used to detect species fraud, detect use of hormones in meat animals, monitor meat processing and to detect off flavours such as boar taint. The aim of this review is to summarize these and other applications to highlight the potential of REIMS for meat analysis. Sampling methods and important considerations for data analysis are discussed as well as limitations of the technology and remaining challenges for practical adoption.


Assuntos
Espectrometria de Massas/métodos , Carne/análise , Animais , Fraude , Espectrometria de Massas/instrumentação , Carne/normas
17.
PLoS One ; 15(12): e0242673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264353

RESUMO

Ractopamine hydrochloride (RAC) is a beta-agonist approved by the U.S. Food and Drug Administration (FDA) as a medicated feed ingredient for cattle during the final days of finishing to improve feed efficiency and growth. Maximum residue limits and U.S. FDA residue tolerances for target tissues have defined management practices around RAC usage in the U.S. However, many countries have adopted zero tolerance policies and testing of off-target tissues, presenting a major challenge for international export. Therefore, the objective this study was to determine the necessary withdrawal time among cattle group-fed RAC to achieve residue concentrations below tolerance levels in muscle and off-target tissues. Specifically, both total and parent RAC residues were quantified in muscle, adipose tissue, rendered tallow, and large intestines from animals group-fed RAC and subjected to withdrawal 2, 4, or 7 days before harvest. Ractopamine (parent and total) residues were below the assay limit of detection (< 0.12 ng/g) in all muscle and adipose tissue samples from animals in control groups (no RAC). However, RAC residues were detectable, but below the limit of quantitation, in 40% of tallow and 17% of large intestine samples from control animals. As expected, mean RAC residue concentrations in muscle, adipose tissue, and large intestine samples decreased (P < 0.05) as the RAC withdrawal duration (days) was extended. Irrespective of RAC withdrawal duration, mean parent RAC residue concentrations in muscle, adipose tissue, and large intestine ranged from 0.33 to 0.76 ng/g, 0.16 to 0.26 ng/g, 3.97 to 7.44 ng/g, respectively and all tallow samples were > 0.14 ng/g (detectable but below the limit of quantitation). Results of this study provide a baseline for the development of management protocol recommendations associated with withdrawal following group-feeding of RAC to beef cattle in countries that allow RAC use and intend to export to global markets which may be subject to zero tolerance policies and off-target tissue testing.


Assuntos
Resíduos de Drogas/análise , Gorduras/química , Intestino Grosso/química , Músculos/química , Fenetilaminas/farmacologia , Carne Vermelha/análise , Animais , Bovinos , Análise dos Mínimos Quadrados , Limite de Detecção , Fenetilaminas/análise
18.
Plant Physiol Biochem ; 157: 416-431, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33202321

RESUMO

Crop load management is an important preharvest factor to balance yield, quality, and maturation in peach. However, few studies have addressed how preharvest factors impact metabolism on fruit of equal maturity. An experiment was conducted to understand how carbon competition impacts fruit internal quality and metabolism in 'Cresthaven' peach trees by imposing distinct thinning severities. Fruit quality was evaluated at three developmental stages (S2, S3, S4), while controlling for equal maturity using non-destructive visual to near-infrared spectroscopy. Non-targeted metabolite profiling was used to characterize fruit at each developmental stage from trees that were unthinned (carbon starvation) or thinned (carbon sufficiency). Carbon sufficiency resulted in significantly higher fruit dry matter content and soluble solids concentration at harvest when compared to the carbon starved, underscoring the true impact of carbon manipulation on fruit quality. Significant differences in the fruit metabolome between treatments were observed at S2 when phenotypes were similar, while less differences were observed at S4 when the carbon sufficient fruit exhibited a superior phenotype. This suggests a potential metabolic priming effect on fruit quality when carbon is sufficiently supplied during early fruit growth and development. In particular, elevated levels of catechin may suggest a link between secondary/primary metabolism and fruit quality development.


Assuntos
Carbono/metabolismo , Frutas/crescimento & desenvolvimento , Metaboloma , Prunus persica/metabolismo , Frutas/metabolismo
19.
Sci Rep ; 10(1): 16474, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020500

RESUMO

Better risk prediction and new molecular targets are key priorities in type 2 diabetes (T2D) research. Little is known about the role of the urine metabolome in predicting the risk of T2D. We aimed to use non-targeted urine metabolomics to discover biomarkers and improve risk prediction for T2D. Urine samples from two community cohorts of 1,424 adults were analyzed by ultra-performance liquid chromatography/mass spectrometry (UPLC-MS). In a discovery/replication design, three out of 62 annotated metabolites were associated with prevalent T2D, notably lower urine levels of 3-hydroxyundecanoyl-carnitine. In participants without diabetes at baseline, LASSO regression in the training set selected six metabolites that improved prediction of T2D beyond established risk factors risk over up to 12 years' follow-up in the test sample, from C-statistic 0.866 to 0.892. Our results in one of the largest non-targeted urinary metabolomics study to date demonstrate the role of the urine metabolome in identifying at-risk persons for T2D and suggest urine 3-hydroxyundecanoyl-carnitine as a biomarker candidate.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/urina , Metaboloma/fisiologia , Urina/fisiologia , Idoso , Biomarcadores/metabolismo , Carnitina/urina , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Feminino , Humanos , Incidência , Masculino , Metabolômica/métodos , Prevalência , Fatores de Risco , Espectrometria de Massas em Tandem/métodos
20.
Data Brief ; 32: 106064, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32775575

RESUMO

Bovine longissimus lumborum (LL) and psoas major (PM) muscles biopsy samples were collected from four carcasses (n = 4) at 45 min, 12 h, and 36 h postmortem from a commercial beef processing facility. Proteins present in the early postmortem LL and PM proteomes were identified and quantified using tandem mass tag (TMT) labelled, fractionated peptides coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS). The data are supplied in this article and are related to "Tandem mass tag labeling to characterize muscle-specific proteome changes in beef during early postmortem period" by Zhai et al. [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...