Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 41(15): 3307-3319, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33500277

RESUMO

Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here, we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.SIGNIFICANCE STATEMENT This article shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with long-term depression (LTD) and long-term potentiation (LTP) being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-type and L-type voltage-gated Ca2+ channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células Cerebelares de Golgi/metabolismo , Potenciais Pós-Sinápticos Excitadores , Potenciação de Longa Duração , Animais , Células Cerebelares de Golgi/fisiologia , Feminino , Masculino , Camundongos , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
2.
J Physiol ; 591(4): 899-918, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23129798

RESUMO

Synaptic transmission at central synapses has usually short latency and graded amplitude, thereby regulating threshold crossing and the probability of action potential generation. In the granular layer of the vestibulo-cerebellum, unipolar brush cells (UBCs) receive a giant synapse generating a stereotyped excitatory postsynaptic potential (EPSP)-burst complex with early-onset (∼2 ms) and high reliability. By using patch-clamp recordings in cerebellar slices of the rat vestibulo-cerebellum, we found that mossy fibre bundle stimulation also evoked (in ∼80% of cases) a late-onset burst (after tens to hundreds of milliseconds) independent of EPSP generation. Different from the early-onset, the late-onset burst delay decreased and its duration increased by raising stimulation intensity or the number of impulses. Although depending on synaptic activity, the late-onset response was insensitive to perfusion of APV ((2R)-5-amino-phosphonopentanoate), NBQX (2,3-dioxo-6-nitro-tetrahydrobenzo(f)quinoxaline-7-sulfonamide) and MCPG ((RS)-α-methyl-4-carboxyphenylglycine) and did not therefore depend on conventional glutamatergic transmission mechanisms. The late-onset response was initiated by a slow depolarizing ramp driven by activation of an H-current (sensitive to ZD7288 and Cs(+)) and of a TRP- (transient receptor potential) current (sensitive to SKF96365), while the high voltage-activated and high voltage-activated Ca(2+) currents (sensitive to nimodipine and mibefradil, respectively) played a negligible role. The late-onset burst was occluded by intracellular cAMP. These results indicate that afferent activity can regulate H- and TRP-current gating in UBCs generating synaptically driven EPSP-independent responses, in which the delay rather than amplitude is graded with the intensity of the input pattern. This modality of synaptic transmission may play an important role in regulating UBC activation and granular layer functions in the vestibulo-cerebellum.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Fibras Nervosas/fisiologia , Animais , Técnicas In Vitro , Ratos , Ratos Wistar , Receptores de Glutamato/fisiologia , Sinapses/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia
3.
Brain Res Rev ; 66(1-2): 5-15, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20950649

RESUMO

Since the discoveries of Camillo Golgi and Ramón y Cajal, the precise cellular organization of the cerebellum has inspired major computational theories, which have then influenced the scientific thought not only on the cerebellar function but also on the brain as a whole. However, six major issues revealing a discrepancy between morphologically inspired hypothesis and function have emerged. (1) The cerebellar granular layer does not simply operate a simple combinatorial decorrelation of the inputs but performs more complex non-linear spatio-temporal transformations and is endowed with synaptic plasticity. (2) Transmission along the ascending axon and parallel fibers does not lead to beam formation but rather to vertical columns of activation. (3) The olivo-cerebellar loop could perform complex timing operations rather than error detection and teaching. (4) Purkinje cell firing dynamics are much more complex than for a linear integrator and include pacemaking, burst-pause discharges, and bistable states in response to mossy and climbing fiber synaptic inputs. (5) Long-term synaptic plasticity is far more complex than traditional parallel fiber LTD and involves also other cerebellar synapses. (6) Oscillation and resonance could set up coherent cycles of activity designing a functional geometry that goes far beyond pre-wired anatomical circuits. These observations clearly show that structure is not sufficient to explain function and that a precise knowledge on dynamics is critical to understand how the cerebellar circuit operates.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Simulação de Dinâmica Molecular , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Células de Purkinje/citologia , Células de Purkinje/fisiologia , Animais , Cerebelo/química , Humanos , Rede Nervosa/química , Células de Purkinje/química , Relação Estrutura-Atividade
4.
Neuroscience ; 176: 274-83, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21185357

RESUMO

Traditionally studies aimed at elucidating the molecular mechanisms underlying cerebellar motor learning have been focused on plasticity at the parallel fiber to Purkinje cell synapse. In recent years, however, the concept is emerging that formation and storage of memories are both distributed over multiple types of synapses at different sites. Here, we examined the potential role of potentiation at the mossy fiber to granule cell synapse, which occurs upstream to plasticity in Purkinje cells. We show that null-mutants of N-methyl d-aspartate-NR2A receptors (NMDA-NR2A(-/-) mice) have impaired induction of postsynaptic long-term potentiation (LTP) at the mossy fiber terminals and a reduced ability to raise the granule cell synaptic excitation, while the basic excitatory output of the mossy fibers is unaffected. In addition, we demonstrate that these NR2A(-/-) mutants as well as mutants in which the C terminal in the NR2A subunit is selectively truncated (NR2A(ΔC/ΔC) mice) have deficits in phase reversal adaptation of their vestibulo-ocular reflex (VOR), while their basic eye movement performance is similar to that of wild type littermates. These results indicate that NMDA-NR2A mediated potentiation at the mossy fiber to granule cell synapse is not required for basic motor performance, and they raise the possibility that it may contribute to some forms of vestibulo-cerebellar memory formation.


Assuntos
Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Atividade Motora/fisiologia , Fibras Nervosas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Masculino , Camundongos , Camundongos Mutantes , Neurônios/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Reflexo Vestíbulo-Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...