Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nature ; 627(8003): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Assuntos
Diabetes Mellitus Tipo 2 , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Adipócitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Células Enteroendócrinas , Epigenômica , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Herança Multifatorial/genética , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Análise de Célula Única
2.
Nat Genet ; 56(2): 222-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177345

RESUMO

Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21 cohorts with 88,316 MD cases and 902,757 controls to previously reported data. This analysis used a range of measures to define MD and included samples of African (36% of effective sample size), East Asian (26%) and South Asian (6%) ancestry and Hispanic/Latin American participants (32%). The multi-ancestry GWAS identified 53 significantly associated novel loci. For loci from GWAS in European ancestry samples, fewer than expected were transferable to other ancestry groups. Fine mapping benefited from additional sample diversity. A transcriptome-wide association study identified 205 significantly associated novel genes. These findings suggest that, for MD, increasing ancestral and global diversity in genetic studies may be particularly important to ensure discovery of core genes and inform about transferability of findings.


Assuntos
Transtorno Depressivo Maior , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença , Transtorno Depressivo Maior/genética , Depressão , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único/genética
3.
Br J Anaesth ; 132(1): 66-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953199

RESUMO

BACKGROUND: Preoperative fasting reduces the risk of pulmonary aspiration during anaesthesia, and 2-h fasting for clear fluids has commonly been recommended. Based on recent evidence of shorter fasting times being safe, the Swiss Society of Paediatric Anaesthesia began recommending 1-h fasting for clear fluids in 2018. This prospective, observational, multi-institutional cohort study aimed to investigate the incidence of adverse respiratory events after implementing the new national recommendation. METHODS: Eleven Swiss anaesthesia institutions joined this cohort study and included patients aged 0-15 yr undergoing anaesthesia for elective procedures after implementation of the 1-h fasting instruction. The primary outcome was the perioperative (defined as the time from anaesthesia induction to emergence) incidence of pulmonary aspiration, gastric regurgitation, and vomiting. Data are presented as median (inter-quartile range; minimum-maximum) or count (percentage). RESULTS: From June 2019 to July 2021, 22 766 anaesthetics were recorded with pulmonary aspiration occurring in 25 (0.11%), gastric regurgitation in 34 (0.15%), and vomiting in 85 (0.37%) cases. No major morbidity or mortality was associated with pulmonary aspiration. Subgroup analysis by effective fasting times (<2 h [n=7306] vs ≥2 h [n=14 660]) showed no significant difference for pulmonary aspiration between these two groups (9 [0.12%] vs 16 [0.11%], P=0.678). Median effective fasting time for clear fluids was 157 [104-314; 2-2385] min. CONCLUSIONS: Implementing a national recommendation of 1-h clear fluid fasting was not associated with a higher incidence of pulmonary aspiration compared with previously reported data.


Assuntos
Refluxo Laringofaríngeo , Pneumonia Aspirativa , Criança , Humanos , Incidência , Estudos de Coortes , Estudos Prospectivos , Jejum , Cuidados Pré-Operatórios/métodos , Aspiração Respiratória , Vômito
4.
Nat Genet ; 56(1): 180-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123642

RESUMO

Here we present BridgePRS, a novel Bayesian polygenic risk score (PRS) method that leverages shared genetic effects across ancestries to increase PRS portability. We evaluate BridgePRS via simulations and real UK Biobank data across 19 traits in individuals of African, South Asian and East Asian ancestry, using both UK Biobank and Biobank Japan genome-wide association study summary statistics; out-of-cohort validation is performed in the Mount Sinai (New York) BioMe biobank. BridgePRS is compared with the leading alternative, PRS-CSx, and two other PRS methods. Simulations suggest that the performance of BridgePRS relative to PRS-CSx increases as uncertainty increases: with lower trait heritability, higher polygenicity and greater between-population genetic diversity; and when causal variants are not present in the data. In real data, BridgePRS has a 61% larger average R2 than PRS-CSx in out-of-cohort prediction of African ancestry samples in BioMe (P = 6 × 10-5). BridgePRS is a computationally efficient, user-friendly and powerful approach for PRS analyses in non-European ancestries.


Assuntos
Predisposição Genética para Doença , Estratificação de Risco Genético , Humanos , Fatores de Risco , Estudo de Associação Genômica Ampla , Teorema de Bayes , Polimorfismo de Nucleotídeo Único/genética , Herança Multifatorial/genética
5.
Commun Med (Lond) ; 3(1): 172, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017291

RESUMO

BACKGROUND: The branched chain amino acids (BCAA) leucine, isoleucine, and valine are essential nutrients that have been associated with diabetes, cancers, and cardiovascular diseases. Observational studies suggest that BCAAs exert homogeneous phenotypic effects, but these findings are inconsistent with results from experimental human and animal studies. METHODS: Hypothesizing that inconsistencies between observational and experimental BCAA studies reflect bias from shared lifestyle and genetic factors in observational studies, we used data from the UK Biobank and applied multivariable Mendelian randomization causal inference methods designed to address these biases. RESULTS: In n = 97,469 participants of European ancestry (mean age = 56.7 years; 54.1% female), we estimate distinct and often opposing total causal effects for each BCAA. For example, of the 117 phenotypes with evidence of a statistically significant total causal effect for at least one BCAA, almost half (44%, n = 52) are associated with only one BCAA. These 52 associations include total causal effects of valine on diabetic eye disease [odds ratio = 1.51, 95% confidence interval (CI) = 1.31, 1.76], valine on albuminuria (odds ratio = 1.14, 95% CI = 1.08, 1.20), and isoleucine on angina (odds ratio = 1.17, 95% CI = 1.31, 1.76). CONCLUSIONS: Our results suggest that the observational literature provides a flawed picture of BCAA phenotypic effects that is inconsistent with experimental studies and could mislead efforts developing novel therapeutics. More broadly, these findings motivate the development and application of causal inference approaches that enable 'omics studies conducted in observational settings to account for the biasing effects of shared genetic and lifestyle factors.


The three branched chain amino acids (BCAAs) leucine, isoleucine, and valine are important building blocks of muscle proteins that are obtained from the diet. Many studies in human populations have examined whether BCAAs affect health and disease. These human studies report results that are inconsistent with results from highly controlled animal studies. Because interest in the therapeutic targeting of BCAAs is growing, we wanted to better understand these discrepancies. Briefly, we used data from a large database that captured many diseases (e.g., cardiovascular disease, cancers, and respiratory disease) and new statistical methods. Our results showed that discrepancies between human studies and animal studies may reflect errors in the ways human studies were designed and conducted. As a result, these human studies may provide a flawed picture of BCAA effects that could mislead efforts developing novel therapeutics.

6.
Nat Genet ; 55(11): 1912-1919, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904051

RESUMO

Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Mosaicismo , Humanos , População Negra/genética , Hispânico ou Latino/genética , Medicina de Precisão
7.
Open Heart ; 10(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37648373

RESUMO

INTRODUCTION: The independent and causal cardiovascular disease risk factor lipoprotein(a) (Lp(a)) is elevated in >1.5 billion individuals worldwide, but studies have prioritised European populations. METHODS: Here, we examined how ancestrally diverse studies could clarify Lp(a)'s genetic architecture, inform efforts examining application of Lp(a) polygenic risk scores (PRS), enable causal inference and identify unexpected Lp(a) phenotypic effects using data from African (n=25 208), East Asian (n=2895), European (n=362 558), South Asian (n=8192) and Hispanic/Latino (n=8946) populations. RESULTS: Fourteen genome-wide significant loci with numerous population specific signals of large effect were identified that enabled construction of Lp(a) PRS of moderate (R2=15% in East Asians) to high (R2=50% in Europeans) accuracy. For all populations, PRS showed promise as a 'rule out' for elevated Lp(a) because certainty of assignment to the low-risk threshold was high (88.0%-99.9%) across PRS thresholds (80th-99th percentile). Causal effects of increased Lp(a) with increased glycated haemoglobin were estimated for Europeans (p value =1.4×10-6), although inverse effects in Africans and East Asians suggested the potential for heterogeneous causal effects. Finally, Hispanic/Latinos were the only population in which known associations with coronary atherosclerosis and ischaemic heart disease were identified in external testing of Lp(a) PRS phenotypic effects. CONCLUSIONS: Our results emphasise the merits of prioritising ancestral diversity when addressing Lp(a) evidence gaps.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Humanos , Lipoproteína(a)/genética , Lacunas de Evidências , Fatores de Risco , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética
8.
medRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034649

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

9.
Sci Rep ; 13(1): 3579, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864090

RESUMO

Genome-wide association studies have identified over five hundred loci that contribute to variation in type 2 diabetes (T2D), an established risk factor for many diseases. However, the mechanisms and extent through which these loci contribute to subsequent outcomes remain elusive. We hypothesized that combinations of T2D-associated variants acting on tissue-specific regulatory elements might account for greater risk for tissue-specific outcomes, leading to diversity in T2D disease progression. We searched for T2D-associated variants acting on regulatory elements and expression quantitative trait loci (eQTLs) in nine tissues. We used T2D tissue-grouped variant sets as genetic instruments to conduct 2-Sample Mendelian Randomization (MR) in ten related outcomes whose risk is increased by T2D using the FinnGen cohort. We performed PheWAS analysis to investigate whether the T2D tissue-grouped variant sets had specific predicted disease signatures. We identified an average of 176 variants acting in nine tissues implicated in T2D, and an average of 30 variants acting on regulatory elements that are unique to the nine tissues of interest. In 2-Sample MR analyses, all subsets of regulatory variants acting in different tissues were associated with increased risk of the ten secondary outcomes studied on similar levels. No tissue-grouped variant set was associated with an outcome significantly more than other tissue-grouped variant sets. We did not identify different disease progression profiles based on tissue-specific regulatory and transcriptome information. Bigger sample sizes and other layers of regulatory information in critical tissues may help identify subsets of T2D variants that are implicated in certain secondary outcomes, uncovering system-specific disease progression.


Assuntos
Terapia de Aceitação e Compromisso , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Progressão da Doença , Estudo de Associação Genômica Ampla , Fatores de Risco , Análise da Randomização Mendeliana
10.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865148

RESUMO

Polygenic Risk Scores (PRS) have huge potential to contribute to biomedical research and to a future of precision medicine, but to date their calculation relies largely on Europeanancestry GWAS data. This global bias makes most PRS substantially less accurate in individuals of non-European ancestry. Here we present BridgePRS , a novel Bayesian PRS method that leverages shared genetic effects across ancestries to increase the accuracy of PRS in non-European populations. The performance of BridgePRS is evaluated in simulated data and real UK Biobank (UKB) data across 19 traits in African, South Asian and East Asian ancestry individuals, using both UKB and Biobank Japan GWAS summary statistics. BridgePRS is compared to the leading alternative, PRS-CSx , and two single-ancestry PRS methods adapted for trans-ancestry prediction. PRS trained in the UK Biobank are then validated out-of-cohort in the independent Mount Sinai (New York) Bio Me Biobank. Simulations reveal that BridgePRS performance, relative to PRS-CSx , increases as uncertainty increases: with lower heritability, higher polygenicity, greater between-population genetic diversity, and when causal variants are not present in the data. Our simulation results are consistent with real data analyses in which BridgePRS has better predictive accuracy in African ancestry samples, especially in out-of-cohort prediction (into Bio Me ), which shows a 60% boost in mean R 2 compared to PRS-CSx ( P = 2 × 10 -6 ). BridgePRS performs the full PRS analysis pipeline, is computationally efficient, and is a powerful method for deriving PRS in diverse and under-represented ancestry populations.

11.
Res Sq ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778386

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hematologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

12.
Circulation ; 147(12): 942-955, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36802703

RESUMO

BACKGROUND: Calcific aortic stenosis (CAS) is the most common valvular heart disease in older adults and has no effective preventive therapies. Genome-wide association studies (GWAS) can identify genes influencing disease and may help prioritize therapeutic targets for CAS. METHODS: We performed a GWAS and gene association study of 14 451 patients with CAS and 398 544 controls in the Million Veteran Program. Replication was performed in the Million Veteran Program, Penn Medicine Biobank, Mass General Brigham Biobank, BioVU, and BioMe, totaling 12 889 cases and 348 094 controls. Causal genes were prioritized from genome-wide significant variants using polygenic priority score gene localization, expression quantitative trait locus colocalization, and nearest gene methods. CAS genetic architecture was compared with that of atherosclerotic cardiovascular disease. Causal inference for cardiometabolic biomarkers in CAS was performed using Mendelian randomization and genome-wide significant loci were characterized further through phenome-wide association study. RESULTS: We identified 23 genome-wide significant lead variants in our GWAS representing 17 unique genomic regions. Of the 23 lead variants, 14 were significant in replication, representing 11 unique genomic regions. Five replicated genomic regions were previously known risk loci for CAS (PALMD, TEX41, IL6, LPA, FADS) and 6 were novel (CEP85L, FTO, SLMAP, CELSR2, MECOM, CDAN1). Two novel lead variants were associated in non-White individuals (P<0.05): rs12740374 (CELSR2) in Black and Hispanic individuals and rs1522387 (SLMAP) in Black individuals. Of the 14 replicated lead variants, only 2 (rs10455872 [LPA], rs12740374 [CELSR2]) were also significant in atherosclerotic cardiovascular disease GWAS. In Mendelian randomization, lipoprotein(a) and low-density lipoprotein cholesterol were both associated with CAS, but the association between low-density lipoprotein cholesterol and CAS was attenuated when adjusting for lipoprotein(a). Phenome-wide association study highlighted varying degrees of pleiotropy, including between CAS and obesity at the FTO locus. However, the FTO locus remained associated with CAS after adjusting for body mass index and maintained a significant independent effect on CAS in mediation analysis. CONCLUSIONS: We performed a multiancestry GWAS in CAS and identified 6 novel genomic regions in the disease. Secondary analyses highlighted the roles of lipid metabolism, inflammation, cellular senescence, and adiposity in the pathobiology of CAS and clarified the shared and differential genetic architectures of CAS with atherosclerotic cardiovascular diseases.


Assuntos
Estenose da Valva Aórtica , Veteranos , Humanos , Idoso , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Estenose da Valva Aórtica/genética , Obesidade/genética , Fatores de Transcrição/genética , Lipoproteína(a)/genética , Lipoproteínas LDL , Colesterol , Polimorfismo de Nucleotídeo Único , Glicoproteínas/genética , Proteínas Nucleares/genética
13.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747810

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

14.
Nat Commun ; 14(1): 250, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36646682

RESUMO

Understanding corrosion mechanisms is of importance for reducing the global cost of corrosion. While the properties of engineering components are considered at a macroscopic scale, corrosion occurs at micro or nano scale and is influenced by local microstructural variations inherent to engineering alloys. However, studying such complex microstructures that involve multiple length scales requires a multitude of advanced experimental procedures. Here, we present a method using correlated electron microscopy techniques over a range of length scales, combined with crystallographic modelling, to provide understanding of the competing mechanisms that control the waterside corrosion of zirconium alloys. We present evidence for a competition between epitaxial strain and growth stress, which depends on the orientation of the substrate leading to local variations in oxide microstructure and thus protectiveness. This leads to the possibility of tailoring substrate crystallographic textures to promote stress driven, well-oriented protective oxides, and so to improving corrosion performance.

15.
Diabetologia ; 66(1): 116-126, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216889

RESUMO

AIMS/HYPOTHESIS: We examined the contribution of rare HNF1A variants to type 2 diabetes risk and age of diagnosis, and the extent to which their impact is affected by overall genetic susceptibility, across three ancestry groups. METHODS: Using exome sequencing data of 160,615 individuals of the UK Biobank and 18,797 individuals of the BioMe Biobank, we identified 746 carriers of rare functional HNF1A variants (minor allele frequency ≤1%), of which 507 carry variants in the functional domains. We calculated polygenic risk scores (PRSs) based on genome-wide association study summary statistics for type 2 diabetes, and examined the association of HNF1A variants and PRS with risk of type 2 diabetes and age of diagnosis. We also tested whether the PRS affects the association between HNF1A variants and type 2 diabetes risk by including an interaction term. RESULTS: Rare HNF1A variants that are predicted to impair protein function are associated with increased risk of type 2 diabetes in individuals of European ancestry (OR 1.46, p=0.049), particularly when the variants are located in the functional domains (OR 1.89, p=0.002). No association was observed for individuals of African ancestry (OR 1.10, p=0.60) or Hispanic-Latino ancestry (OR 1.00, p=1.00). Rare functional HNF1A variants were associated with an earlier age at diagnosis in the Hispanic-Latino population (ß=-5.0 years, p=0.03), and this association was marginally more pronounced for variants in the functional domains (ß=-5.59 years, p=0.03). No associations were observed for other ancestries (African ancestry ß=-2.7 years, p=0.13; European ancestry ß=-3.5 years, p=0.20). A higher PRS was associated with increased odds of type 2 diabetes in all ancestries (OR 1.61-2.11, p<10-5) and an earlier age at diagnosis in individuals of African ancestry (ß=-1.4 years, p=3.7 × 10-6) and Hispanic-Latino ancestry (ß=-2.4 years, p<2 × 10-16). Furthermore, a higher PRS exacerbated the effect of the functional HNF1A variants on type 2 diabetes in the European ancestry population (pinteraction=0.037). CONCLUSIONS/INTERPRETATION: We show that rare functional HNF1A variants, in particular those located in the functional domains, increase the risk of type 2 diabetes, at least among individuals of European ancestry. Their effect is even more pronounced in individuals with a high polygenic susceptibility. Our analyses highlight the importance of the location of functional variants within a gene and an individual's overall polygenic susceptibility, and emphasise the need for more genetic data in non-European populations.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Fator 1-alfa Nuclear de Hepatócito/genética
17.
Nat Commun ; 13(1): 7592, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481753

RESUMO

Genome-wide association studies have identified thousands of single nucleotide variants and small indels that contribute to variation in hematologic traits. While structural variants are known to cause rare blood or hematopoietic disorders, the genome-wide contribution of structural variants to quantitative blood cell trait variation is unknown. Here we utilized whole genome sequencing data in ancestrally diverse participants of the NHLBI Trans Omics for Precision Medicine program (N = 50,675) to detect structural variants associated with hematologic traits. Using single variant tests, we assessed the association of common and rare structural variants with red cell-, white cell-, and platelet-related quantitative traits and observed 21 independent signals (12 common and 9 rare) reaching genome-wide significance. The majority of these associations (N = 18) replicated in independent datasets. In genome-editing experiments, we provide evidence that a deletion associated with lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer and decreased S1PR3 expression.


Assuntos
Células Sanguíneas , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento Completo do Genoma
19.
Nat Genet ; 54(5): 560-572, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551307

RESUMO

We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 × 10-9), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/epidemiologia , Etnicidade , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
20.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385311

RESUMO

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...