Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 4(2): 172-180, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792423

RESUMO

Retinal dystrophies and age-related macular degeneration related to photoreceptor degeneration can cause blindness. In blind patients, although the electrical activation of the residual retinal circuit can provide useful artificial visual perception, the resolutions of current retinal prostheses have been limited either by large electrodes or small numbers of pixels. Here we report the evaluation, in three awake non-human primates, of a previously reported near-infrared-light-sensitive photovoltaic subretinal prosthesis. We show that multipixel stimulation of the prosthesis within radiation safety limits enabled eye tracking in the animals, that they responded to stimulations directed at the implant with repeated saccades and that the implant-induced responses were present two years after device implantation. Our findings pave the way for the clinical evaluation of the prosthesis in patients affected by dry atrophic age-related macular degeneration.


Assuntos
Degeneração Macular/reabilitação , Movimentos Sacádicos , Visão Ocular/fisiologia , Percepção Visual , Próteses Visuais , Animais , Modelos Animais de Doenças , Medições dos Movimentos Oculares , Macaca fascicularis , Degeneração Macular/fisiopatologia , Masculino , Estimulação Luminosa , Células Ganglionares da Retina/fisiologia
2.
PLoS One ; 4(6): e6058, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19557145

RESUMO

BACKGROUND: Formulation of DNA/cationic lipid complexes (lipoplexes) designed for nucleic acid delivery mostly results in positively charged particles which are thought to enter cells by endocytosis. We recently developed a lipoplex formulation called Neutraplex that allows preparation of both cationic and anionic stable complexes with similar lipid content and ultrastructure. METHODOLOGY/PRINCIPAL FINDINGS: To assess whether the global net charge could influence cell uptake and activity of the transported oligonucleotides (on), we prepared lipoplexes with positive and negative charges and compared: (i) their physicochemical properties by zeta potential analysis and dynamic light scattering, (ii) their cell uptake by fluorescence microscopy and flow cytometry, and (iii) the biological activity of the transported ON using a splicing correction assay. We show that positively or negatively charged lipoplexes enter cells cells using both temperature-dependent and -independent uptake mechanisms. Specifically, positively charged lipoplexes predominantly use a temperature-dependent transport when cells are incubated OptiMEM medium. Anionic lipoplexes favour an energy-independent transport and show higher ON activity than cationic lipoplexes in presence of serum. However, lipoplexes with high positive global net charge and OptiMEM medium give the highest uptake and ON activity levels. CONCLUSIONS: These findings suggest that, in addition to endocytosis, lipoplexes may enter cell via a temperature-independent mechanism, which could be mediated by lipid mixing. Such characteristics might arise from the specific lipoplex ultrastructure and should be taken into consideration when developing lipoplexes designed for in vivo or ex vivo nucleic acid transfer.


Assuntos
DNA/metabolismo , Endocitose , Processamento Alternativo , Ânions , Cátions , Citometria de Fluxo/métodos , Células HeLa , Humanos , Luz , Lipídeos/química , Microscopia de Fluorescência/métodos , Oligonucleotídeos/química , Oligonucleotídeos Antissenso/química , Tamanho da Partícula , Espalhamento de Radiação , Temperatura
3.
Nucleic Acids Res ; 36(20): 6343-54, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18796528

RESUMO

Redirecting the splicing machinery through the hybridization of high affinity, RNase H- incompetent oligonucleotide analogs such as phosphoramidate morpholino oligonucleotides (PMO) might lead to important clinical applications. Chemical conjugation of PMO to arginine-rich cell penetrating peptides (CPP) such as (R-Ahx-R)(4) (with Ahx standing for 6-aminohexanoic acid) leads to sequence-specific splicing correction in the absence of endosomolytic agents in cell culture at variance with most conventional CPPs. Importantly, (R-Ahx-R)(4)-PMO conjugates are effective in mouse models of various viral infections and Duchenne muscular dystrophy. Unfortunately, active doses in some applications might be close to cytotoxic ones thus presenting challenge for systemic administration of the conjugates in those clinical settings. Structure-activity relationship studies have thus been undertaken to unravel CPP structural features important for the efficient nuclear delivery of the conjugated PMO and limiting steps in their internalization pathway. Affinity for heparin (taken as a model heparan sulfate), hydrophobicity, cellular uptake, intracellular distribution and splicing correction have been monitored. Spacing between the charges, hydrophobicity of the linker between the Arg-groups and Arg-stereochemistry influence splicing correction efficiency. A significant correlation between splicing correction efficiency, affinity for heparin and ability to destabilize model synthetic vesicles has been observed but no correlation with cellular uptake has been found. Efforts will have to focus on endosomal escape since it appears to remain the limiting factor for the delivery of these splice-redirecting ON analogs.


Assuntos
Arginina/química , Oligonucleotídeos/administração & dosagem , Peptídeos/química , Amidas/química , Ácido Aminocaproico/química , Transporte Biológico , Endossomos/metabolismo , Células HeLa , Heparina/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Morfolinas/química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Peptídeos/metabolismo , Ácidos Fosfóricos/química , Estereoisomerismo , Relação Estrutura-Atividade
4.
Int J Pharm ; 344(1-2): 96-102, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17600642

RESUMO

Synthetic oligonucleotides offer interesting prospects for the control of gene expression but clinical applications have been severely limited by their poor bioavailability. Cationic lipids have been widely used for the delivery of charged oligonucleotide (ON) analogues but most of the commercial formulations are toxic and poorly stable in the presence of serum proteins. We have developed a DOGS/DOPE liposome formulation named DLS (for delivery liposomal system), that allows for the efficient nuclear delivery of negatively charged antisense ON analogues as monitored by fluorescence microscopy and by their ability to correct deficient pre-mRNA splicing, even in serum-supplemented cell culture. Uncharged DNA mimics such as peptide nucleic acids (PNA), or phosphorodiamidate morpholino (PMO) ON are particularly interesting for their high metabolic stability and affinity for complementary RNA targets but they cannot be delivered with cationic lipids. Cell penetrating peptides (CPP), such as Tat or penetratin, have been used widely as conjugates for the delivery of various biomolecules and might be appropriate for neutral ON analogues. However, entrapment within endocytic vesicles severely limits the efficiency of PNA delivery by CPPs in the absence of endosomolytic drugs, such as chloroquine. The conjugation of new arginine-rich CPPs to PNA allows efficient nuclear delivery in the absence of chloroquine as monitored in a splicing correction assay. Both strategies have their advantages but DLS-mediated delivery remains more efficient than CPP delivery for the nuclear targeting of splice correcting ON analogues in vitro.


Assuntos
Oligonucleotídeos Antissenso/administração & dosagem , Oligopeptídeos/química , Ácidos Nucleicos Peptídicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Genes Reporter , Globinas/genética , Células HeLa , Humanos , Íntrons , Lipossomos , Luciferases/genética , Luciferases/metabolismo , Oligonucleotídeos Antissenso/química , Oligopeptídeos/síntese química , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , Splicing de RNA , Transfecção
5.
J Control Release ; 116(3): 304-13, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17097177

RESUMO

The efficient and non-toxic nuclear delivery of steric-block oligonucleotides (ON) is a prerequisite for therapeutic strategies involving splice correction or exon skipping. Cationic cell penetrating peptides (CPPs) have given rise to much interest for the intracellular delivery of biomolecules, but their efficiency in promoting cytoplasmic or nuclear delivery of oligonucleotides has been hampered by endocytic sequestration and subsequent degradation of most internalized material in endocytic compartments. In the present study, we compared the splice correction activity of three different CPPs conjugated to PMO(705), a steric-block ON targeted against the mutated splicing site of human beta-globin pre-mRNA in the HeLa pLuc705 splice correction model. In contrast to Tat48-60 (Tat) and oligoarginine (R(9)F(2)) PMO(705) conjugates, the 6-aminohexanoic-spaced oligoarginine (R-Ahx-R)(4)-PMO(705) conjugate was able to promote an efficient splice correction in the absence of endosomolytic agents. Our mechanistic investigations about its uptake mechanisms lead to the conclusion that these three vectors are internalized using the same endocytic route involving proteoglycans, but that the (R-Ahx-R)(4)-PMO(705) conjugate has the unique ability to escape from lysosomial fate and to access to the nuclear compartment. This vector, which has displays an extremely low cytotoxicity, the ability to function without chloroquine adjunction and in the presence of serum proteins. It thus offers a promising lead for the development of vectors able to enhance the delivery of therapeutic steric-block ON in clinically relevant models.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Morfolinas/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Ácidos Nucleicos Peptídicos/administração & dosagem , Peptídeos/administração & dosagem , Splicing de RNA/efeitos dos fármacos , Animais , Células CHO , Técnicas de Cultura de Células , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Endocitose , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HeLa , Humanos , Morfolinas/química , Morfolinos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sítios de Splice de RNA/efeitos dos fármacos
6.
Chembiochem ; 7(4): 684-92, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16518865

RESUMO

The grafting of cationic groups to synthetic oligonucleotides (ONs) in order to reduce the charge repulsion between the negatively charged strands of a duplex or triplex, and consequently to increase a complex's stability, has been extensively studied. Guanidinium groups, which are highly basic and positively charged over a wide pH range, could be an efficient ON modification to enhance their affinity for nucleic acid targets and to improve cellular uptake. A straightforward post-synthesis method to convert amino functions attached to ONs (on sugar, nucleobase or backbone) into guanidinium tethers has been perfected. In comparison to amino groups, such cationic groups anchored to alpha-oligonucleotide phosphoramidate backbones play important roles in duplex stability, particularly with RNA targets. This high affinity could be explained by dual recognition resulting from Watson-Crick or Hoogsteen base pairing combined with cationic/anionic backbone recognition between strands involving H-bond formation and salt bridging. Molecular-dynamics simulations corroborate interactions between the cationic backbones of the alpha-ONs and the anionic backbones of the nucleic acid targets. Moreover, ONs with guanidinium modification increased cellular uptake relative to negatively charged ONs. The cellular localization of these new cationic phosphoramidate ONs is mainly cytoplasmic. The uptake of these ON analogues might occur through endocytosis.


Assuntos
Guanidina/química , Oligonucleotídeos/química , Oligonucleotídeos/farmacocinética , Cátions/síntese química , Cátions/química , Cátions/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA/química , DNA/efeitos dos fármacos , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Oligonucleotídeos/síntese química , Conformação Proteica , RNA/química , RNA/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura
7.
Biochim Biophys Acta ; 1758(3): 364-74, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16360115

RESUMO

Expression of alternatively spliced mRNA variants at specific stages of development or in specific cells and tissues contributes to the functional diversity of the human genome. Aberrations in alternative splicing were found as a cause or a contributing factor to the development, progression, or maintenance of numerous diseases. The use of antisense oligonucleotides (ON) to modify aberrant expression patterns of alternatively spliced mRNAs is a novel means of potentially controlling such diseases. Oligonucleotides can be designed to repair genetic mutations, to modify genomic sequences in order to compensate for gene deletions, or to modify RNA processing in order to improve the effects of the underlying gene mutation. Steric block ON approach have proven to be effective in experimental model for various diseases. Here, we describe our experience in investigating two strategies for ON delivery: ON conjugation with basic peptides and lipid-based particulate system (lipoplex). Basic peptides or Cell Penetrating Peptides (CPP) such as the TAT-derived peptide appear to circumvent many problems associated with ON and drug delivery. This strategy may represent the next paradigm in our ability to modulate cell function and offers a unique avenue for the treatment of disease. Lipoplexes result from the intimate interaction of ON with cationic lipids leading to ON carrying particles able to be taken up by cells and to release ON in the cytoplasm. We have used as an experimental model the correction of a splicing alteration of the mutated beta-globin intron causing thalassemia. Data on cell penetration and efficacy of correction of specific steric block ON delivered either by basic peptides or lipoplex are described. A comparison of the properties of both delivery systems is made respective to the use of this new class of therapeutic molecules.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Processamento Alternativo/genética , Animais , Lipídeos/administração & dosagem , Peptídeos/administração & dosagem
8.
J Control Release ; 110(3): 595-604, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16377019

RESUMO

Splicing correction by steric-blocking oligonucleotides (ON) might lead to important clinical applications but requires efficient delivery to cell nuclei. The conjugation of short oligolysine tails has been used to deliver a correcting peptide nucleic acid (PNA) sequence in a positive readout assay in which ON hybridization to the cryptic splice site is strictly required for the expression of a luciferase reporter gene. We have investigated the mechanism of cellular uptake and the efficiency of a (Lys)(8)-PNA-Lys construction in this model system. Cell uptake is temperature-dependent and leads to sequestration of the conjugate in cytoplasmic vesicles in keeping with an endocytic mechanism of internalization. Accordingly a significant and sequence-specific splicing correction is achieved only in the presence of endosome-disrupting agents as chloroquine or 0.5 M sucrose. These endosome-disrupting agents do not affect the activity of free PNA, and do not increase (Lys)(8)-PNA-Lys uptake.


Assuntos
Endossomos/genética , Ácidos Nucleicos Peptídicos/genética , Splicing de RNA/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Ácidos Nucleicos Peptídicos/metabolismo
9.
J Biol Chem ; 280(15): 15300-6, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15687490

RESUMO

Delivery of macromolecules mediated by protein transduction domains (PTDs) attracts a lot of interest due to its therapeutic and biotechnological potential. A major reevaluation of the mechanism of PTD-mediated internalization and the role of endocytosis in this mechanism has been recently initiated. Here, we demonstrate that the entry of TAT peptide (one of the most widely used PTDs) into different primary cells is ATPand temperature-dependent, indicating the involvement of endocytosis. Specific inhibitors of clathrin-dependent endocytosis partially inhibit TAT peptide uptake, implicating this pathway in TAT peptide entry. In contrast, the caveolin-dependent pathway is not essential for the uptake of unconjugated TAT peptide as evidenced by the efficient internalization of TAT in the presence of the known inhibitors of raft/caveolin-dependent pathway and for cells lacking or deficient in caveolin-1 expression. Whereas a significant part of TAT peptide uptake involves heparan sulfate receptors, efficient internalization of peptide is observed even in their absence, indicating the involvement of other receptors. Our results suggest that unconjugated peptide might follow endocytic pathways different from those utilized by TAT peptide conjugated to different proteins.


Assuntos
Proteínas de Transporte/química , Clatrina/metabolismo , Produtos do Gene tat/química , Heparitina Sulfato/metabolismo , Peptídeos/química , Trifosfato de Adenosina/química , Animais , Células CHO , Caveolina 1 , Caveolinas/química , Linhagem Celular , Clatrina/química , Cricetinae , Endocitose , Endotélio Vascular/metabolismo , Citometria de Fluxo , Genes tat , Células HeLa , Heparitina Sulfato/química , Humanos , Células Jurkat , Lipídeos/química , Macrófagos/metabolismo , Monensin/química , Potássio/química , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Temperatura , Fatores de Tempo
10.
Curr Opin Mol Ther ; 5(2): 133-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12772502

RESUMO

Antisense oligonucleotides and short interfering RNAs are routinely used for gene function analysis and are being developed for clinical applications. The mechanism underlying internalization of free oligonucleotides into cells is poorly understood and inefficient in most cases. Antisense oligonucleotide delivery into ex vivo cells is routinely improved by the addition of cationic lipids. New chemical modifications and vectors allowing improved cellular delivery in vivo are being developed.


Assuntos
Oligonucleotídeos Antissenso/farmacocinética , Animais , Transporte Biológico Ativo , Vetores Genéticos , Humanos , Oligonucleotídeos Antissenso/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...